49 research outputs found

    Engineering the Photoresponse of InAs Nanowires

    Get PDF
    We report on individual-InAs nanowire optoelectronic devices which can be tailored to exhibit either negative or positive photoconductivity (NPC or PPC). The NPC photoresponse time and magnitude is found to be highly tunable by varying the nanowire diameter under controlled growth conditions. Using hysteresis characterization, we decouple the observed photoexcitation-induced hot electron trapping from conventional electric field-induced trapping to gain a fundamental insight into the interface trap states responsible for NPC. Furthermore, we demonstrate surface passivation without chemical etching which both enhances the field-effect mobility of the nanowires by approximately an order of magnitude and effectively eliminates the hot carrier trapping found to be responsible for NPC, thus restoring an "intrinsic" positive photoresponse. This opens pathways toward engineering semiconductor nanowires for novel optical-memory and photodetector applications.We acknowledge funding from the EPSRC (Grant No. EP/ M009505/1) and the ERC (Grant No. 716471, ACrossWire). S.H. acknowledges funding from the EPSRC (Grant No. EP/ P005152/1). This work was also supported by the Australian Research Council, Australian National Fabrication Facility and Australian Microscopy & Microanalysis Research Facility. J.A.A.-W. acknowledges the support of his Research Fellowships from the Royal Commission for the Exhibition of 1851 and Churchill College, Cambridge. C.K.G acknowledges the support of her scholarship from The Winston Churchill Foundation of the United States

    ATP release via anion channels

    Get PDF
    ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4- in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed

    Trypsin increases availability and open probability of cardiac L-type Ca2+ channels without affecting inactivation induced by Ca2+.

    Get PDF
    The patch-clamp technique was employed to investigate the response of single L-type Ca2+ channels to the protease trypsin applied to the intracellular face of excised membrane patches from guinea pig ventricular myocytes. Calpastatin and ATP were used to prevent run-down of Ca2+ channel activity monitored with 96 mM Ba2+ as charge carrier in the presence of 2.5 microM (-)-BAYK 8644. Upon application of trypsin (100 micrograms/ml) channel activity was enhanced fourfold and remained elevated upon removal of trypsin, as expected of a proteolytic, irreversible modification. The trypsin effect was not mediated by a proteolytic activation of protein kinases, as evidenced by the insensitivity of this effect to protein kinase inhibitors. Trypsin-modified Ca2+ channels exhibited the usual run-down phanomenon upon removal of calpastatin and ATP. In ensemble average currents trypsin-induced changes of channel function are apparent as a threefold increase in peak current and a reduction in current inactivation. At the single channel level these effects were based on about a twofold increase in both Ca2+ channels' availability and open probability. Neither the actual number of channels in the patch nor their unitary conductance as well as reversal potential was changed by trypsin. The Ca(2+)-induced inactivation was not impaired, as judged by a comparable sensitivity of trypsin-modified Ca2+ channels to intracellular Ca2+. Similarly, trypsin treatment did not affect the sensitivity of Ca2+ channels to phenylalkylmine inhibition. The observed alterations in channel function are discussed in terms of possible structural correlates

    Estimating the number of channels in patch-clamp recordings: application to kinetic analysis of multichannel data from voltage-operated channels.

    Get PDF
    Important kinetic information of voltage-operated ion channels can be obtained by estimating the open probability, the availability, and the first latency, and by applying run analysis. In the case of multichannel patches, estimation of the number of available channels is a prerequisite for the above analysis. Here we describe a method for calculation of the a posteriori probability of the number of available channels in each sweep by using the Bayes formula. This probability serves as a measure for the number of channels and allows for first latency determination and run analysis. The methods described were applied to simulated and experimental data obtained from L-type Ca2+ channel recordings
    corecore