317 research outputs found

    Designing high-share 50% and 100% renewable energy scenarios for Ragusa by sustainable energy toolkit application

    Get PDF
    Increasing renewable energy production and integrating it into the current energy systems may lead to conditional solutions linked to the context of applications as well as regulatory and techno-socioeconomic issues. The PRISMI Plus toolkit is a powerful tool that can be improved to entail rural areas and energy islands for effective planning of the various renewable energy system scenarios associated with urban contexts. The target Flagship Case Study is Ragusa, a Municipality located in Southern Italy, analyzed with the EnergyPLAN software. The simulation and validation were carried out by the HOMER software. The input dataset was created jointly in collaboration with the Municipality, the updated Sustainable Energy Action Plan was inserted into the PRISMI Plus toolkit, and three transition scenarios based on different renewable energy uses were considered within the post-processing stage. For the baseline scenario, no green energy is considered and the whole electricity consumption is taken into account. In scenarios two and three, 50% and 100% renewable energy shares are secured through optimal investment in Photovoltaic (PV) panels, Wind Turbines (WT), and Battery Energy Storage (BES) technologies. From an economic point of view, it was concluded that the best scenario is the second one thanks to the increased technical capacity of the investment ratio compared with the two other scenarios, showing an energy price reduction of up to 10 %

    Analyzing the impact of demand response and reserves in islands energy planning

    Get PDF
    Small Islands usually rely on fossil fuels for their energy supply and face common challenges such as high energy costs and carbon dioxide emissions. For these reasons they represent interesting cases for analysing the transition towards a clean and secure energy system. Nevertheless, integrating non-dispatchable Renewable Energy Sources in the power grid causes stability issues and this is particularly true for island grids. Such issue is not fully considered in long-term energy planning; indeed, an important factor that should be considered in order to ensure the reliability of the grid are Reserves. There are different types of Reserves depending on the reactiveness/response time and the duration of the service. In this paper, primary and secondary reserves have been analysed in order to plan the long-term energy transition of the small island of Favignana, Italy by means of the new version of H2RES, a Linear Programming single-objective optimisation model able to provide a long-term capacity investment and dispatching optimisation. It has been found that biomass generators are favoured to both photovoltaic and wind turbines for their ability to provide reserves and also decrease the unpredictability of the supply. Batteries and Electrolysers are also used mostly for reserve provision

    Hourly energy profile determination technique from monthly energy bills

    Get PDF
    Hourly energy consumption profiles are of primary interest for measures to apply to the dynamics of the energy system. Indeed, during the planning phase, the required data availability and their quality is essential for a successful scenarios’ projection. As a matter of fact, the resolution of available data is not the requested one, especially in the field of their hourly distribution when the objective function is the production-demand matching for effective renewables integration. To fill this gap, there are several data analysis techniques but most of them require strong statistical skills and proper size of the original database. Referring to the built environment data, the monthly energy bills are the most common and easy to find source of data. This is why the authors in this paper propose, test and validate an expeditious mathematical method to extract the building energy demand on an hourly basis. A benchmark hourly profile is considered for a specific type of building, in this case an office one. The benchmark profile is used to normalize the consumption extracted from the 3 tariffs the bill is divided into, accounting for weekdays, Saturdays and Sundays. The calibration is carried out together with a sensitivity analysis of on-site solar electricity production. The method gives a predicted result with an average 25% MAPE and a 32% cvRMSE during one year of hourly profile reconstruction when compared with the measured data given by the Distributor System Operator (DSO)

    Short-Term Wind Speed Forecasting Model Using Hybrid Neural Networks and Wavelet Packet Decomposition

    Get PDF
    Wind speed is one of the most vital, imperative meteorological parameters, thus the prediction of which is of fundamental importance in the studies related to energy management, building construction, damages caused by strong winds, aquatic needs of power plants, the prevalence and spread of diseases, snowmelt, and air pollution. Due to the discrete and nonlinear structure of wind speed, wind speed forecasting at regular intervals is a crucial problem. In this regard, a wide variety of prediction methods have been applied. So far, many activities have been done in order to make optimal use of renewable energy sources such as wind, which have led to the present diverse types of wind speed and strength measuring methods in the various geographical locations. In this paper, a novel forecasting model based on hybrid neural networks (HNNs) and wavelet packet decomposition (WPD) processor has been proposed to predict wind speed. Considering this scenario, the accuracy of the proposed method is compared with other wind speed prediction methods to ensure performance improvement

    Development and testing of the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) cm and mm wavelength occultation instrument

    Get PDF
    We present initial results from testing a new remote sensing system called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). ATOMMS is designed as a satellite-to-satellite occultation system for monitoring climate. We are developing the prototype instrument for an aircraft to aircraft occultation demonstration. Here we focus on field testing of the ATOMMS instrument, in particular the remote sensing of water by measuring the attenuation caused by the 22 GHz and 183 GHz water absorption lines. Our measurements of the 183 GHz line spectrum along an 820 m path revealed that the AM 6.2 spectroscopic model provdes a much better match to the observed spectrum than the MPM93 model. These comparisons also indicate that errors in the ATOMMS amplitude measurements are about 0.3%. Pressure sensitivity bodes well for ATOMMS as a climate instrument. Comparisons with a hygrometer revealed consistency at the 0.05 mb level, which is about 1% of the absolute humidity. Initial measurements of absorption by the 22 GHz line made along a 5.4 km path between two mountaintops captured a large increase in water vapor similar to that measured by several nearby hygrometers. A storm passage between the two instruments yielded our first measurements of extinction by rain and cloud droplets. Comparisons of ATOMMS 1.5 mm opacity measurements with measured visible opacity and backscatter from a weather radar revealed features simultaneously evident in all three datasets confirming the ATOMMS measurements. The combined ATOMMS, radar and visible information revealed the evolution of rain and cloud amounts along the signal path during the passage of the storm. The derived average cloud water content reached typical continental cloud amounts. These results demonstrated a significant portion of the information content of ATOMMS and its ability to penetrate through clouds and rain which is critical to its all-weather, climate monitoring capability

    A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island

    Get PDF
    The correct strategy for monitoring and assessing marine Renewable Energy Sources (RESs) is of great importance for local/national sustainable development. To achieve this goal, it is necessary to measure in the most precise possible manner the local/regional RESs potential. This is especially true for Offshore Wind (OW) energy potential, since the most precise techniques are long and expensive, and are not able to assess the RESs potential of large areas. Today, Remote Sensing (RS) satellites can be considered the most important land and marine observation tools. The RS tools can be used to identify the interested areas for future OW energy converters installations in large and small-scale areas. In this study, the OW energy potential has been analysed by means of a 40 years wind speed data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset of the Samothraki island surrounding area in the Mediterranean Sea. The OW speed potential has been analysed by means of monthly data from ECMWF Interim reanalysis (ERA-Interim) datasets using the Network Common Data Form (NetCDF) format. Automatically, analyses have been carried out using the Region Of Interest (ROI) tool and Geographical Information System (GIS) software in order to extract information about the OW speed assessment of the Samothraki island area. The primary results of this study show that the southwest area of Samothraki island has good potential for future OW farms installation (bottom fixed and floating version) in near and offshore areas. This study shows the OW energy potential per location, as well as the trend of OW speed, which has changed over the past 40 years in the Mediterranean Sea

    Warm-Dense Molecular Gas in the ISM of Starbursts, LIRGs and ULIRGs

    Full text link
    The role of star formation in luminous and ultraluminous infrared galaxies is a hotly debated issue: while it is clear that starbursts play a large role in powering the IR luminosity in these galaxies, the relative importance of possible enshrouded AGNs is unknown. It is therefore important to better understand the role of star forming gas in contributing to the infrared luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as an effective tracer for warm-dense molecular gas heated by active star formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals, LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter Telescope on Mt. Graham, Arizona. Our main results are the following: 1. We find a nearly linear relation between the infrared luminosity and warm-dense molecular gas such that the infrared luminosity increases as the warm-dense molecular gas to the power 0.92; We interpret this to be roughly consistent with the recent results of Gao & Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128 L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km s^-1)^-1. If this conversion factor is ~an order of magnitude less, as suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our objects may have significant contributions to the L_IR by dust-enshrouded AGNs.Comment: 15 Pages, 2 figures, Accepted for Publication in Ap

    Advanced documentation methodologies combined with multi-analytical approach for the preservation and restoration of 18th century architectural decorative elements at Palazzo Nuzzi in Orte (Central Italy)

    Get PDF
    This contribution reports the documentation of the conservation status and the pictorial technique of a wall painting and a stucco arch at Palazzo Nuzzi in Orte, central Italy (Viterbo district), achieved using a wide combination of non-invasive and micro-invasive diagnostic techniques. Specifically, a photogrammetric approach has been used for 2D and 3D ultraviolet fluorescence (UVF) acquisitions. Moreover, the conservation status of the wall painting has been also investigated by a non-invasive active infrared thermograghy technique, i.e. Pulse Compression Thermography (PuCT), used here for the first time on a wall painting to map the surface and sub-surface cracks in the first layers. Pigments, grounds and organic binders were characterised by X-ray fluorescence spectroscopy, micro-stratigraphic analysis, Fourier transform infrared spectroscopy and gas chromatography coupled with mass spectrometry. The results of this unique combination of advanced tools corroborated the historical-artistic attribution to the school of the architect Andrea Pozzo
    corecore