213 research outputs found
Immunohistochemical analysis of adhesive papillae of Clavelina lepadiformis (Müller, 1776) and Clavelina phlegraea (Salfi, 1929) (Tunicata, Ascidiacea)
Almost all ascidian larvae bear three mucus secreting and sensory organs, the adhesive papillae, at the anterior end of the trunk, which play an important role during the settlement phase. The morphology and the cellular composition of these organs varies greatly in the different species. The larvae of the Clavelina genus bear simple bulbous papillae, which are considered to have only a secretory function. We analysed the adhesive papillae of two species belonging to this genus, C. lepadiformis and C. phlegraea, by histological sections and by immunolocalisation of β-tubulin and serotonin, in order to better clarify the cellular composition of these organs. We demonstrated that they contain at least two types of neurons: central neurons, bearing microvilli, and peripheral ciliated neurons. Peripheral neurons of C. lepadiformis contain serotonin. We suggest that these two neurons play different roles during settlement: the central ones may be chemo- or mechanoreceptors that sense the substratum, and the peripheral ones may be involved in the mechanism that triggers metamorphosis
Type I and type II interferons inhibit both basal and tumor necrosis factor-α-induced CXCL8 secretion in primary cultures of human thyrocytes.
Interferons (IFNs) and tumor necrosis factor-α (TNF-α) cooperate in activating several inflammation-related genes, which sustain chronic inflammation in autoimmune thyroid disease (AITD). Much is known about the positive signaling of IFNs to activate gene expression in AITD, while the mechanisms by which IFNs negatively regulate genes remain less studied. While IFNs inhibit CXCL8 secretion in several human cell types, their effects on thyroid cells were not evaluated. Our aim was to study the interplay between TNF-α and type I or type II IFNs on CXCL8 secretion by human thyroid cells. CXCL8 was measured in supernatants of primary cultures of thyroid cells basally and after a 24-h incubation with TNF-α. CXCL8 was detected in thyroid cell supernatants in basal conditions (96.2±23.5 pg/mL) being significantly increased (784.7±217.3 pg/mL; PIFN-β>IFN-α. This study demonstrates that type I and type II IFNs downregulate both basal and TNF-α-induced CXCL8 secretion by human thyrocytes, IFN-γ being the most powerful inhibitor. Future studies aimed at a better comprehension of the interplay between CXCL8 and thyroid diseases appear worthwhile
Land subsidence, Ground Fissures and Buried Faults: InSAR Monitoring of Ciudad Guzmán (Jalisco, Mexico)
We study land subsidence processes and the associated ground fissuring, affecting
an active graben filled by thick unconsolidated deposits by means of InSAR techniques and
fieldwork. On 21 September 2012, Ciudad Guzmán (Jalisco, Mexico) was struck by ground
fissures of about 1.5 km of length, causing the deformation of the roads and the propagation
of fissures in adjacent buildings. The field survey showed that fissures alignment is
coincident with the escarpments produced on 19 September 1985, when a strong earthquake
with magnitude 8.1 struck central Mexico. In order to detect and map the spatio-temporal
features of the processes that led to the 2012 ground fissures, we applied InSAR multitemporal
techniques to process ENVISAT-ASAR and RADARSAT-2 satellite SAR images
acquired between 2003 and 2012. We detect up to 20 mm/year of subsidence of the
northwestern part of Ciudad Guzmán. These incremental movements are consistent with the ground fissures observed in 2012. Based on interferometric results, field data and 2D
numerical model, we suggest that ground deformations and fissuring are due to the presence
of areal subsidence correlated with variable sediment thickness and differential compaction,
partly driven by the exploitation of the aquifers and controlled by the distribution and
position of buried faults
Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product
Background: A growing number of clinical trials have shown that regulatory T (Treg) cell transfer may have a favorable effect on the maintenance of self-tolerance and immune homeostasis in different conditions such as graft-versus-host disease (GvHD), solid organ transplantation, type 1 diabetes, and others. In this context, the availability of a robust manufacturing protocol that is able to produce a sufficient number of functional Treg cells represents a fundamental prerequisite for the success of a cell therapy clinical protocol. However, extended workflow guidelines for nonprofit manufacturers are currently lacking. Despite the fact that different successful manufacturing procedures and cell products with excellent safety profiles have been reported from early clinical trials, the selection and expansion protocols for Treg cells vary a lot. The objective of this study was to validate a Good Manufacturing Practice (GMP)-compliant protocol for the production of Treg cells that approaches the whole process with a risk-management methodology, from process design to completion of final product development. High emphasis was given to the description of the quality control (QC) methodologies used for the in-process and release tests (sterility, endotoxin test, mycoplasma, and immunophenotype). Results: The GMP-compliant protocol defined in this work allows at least 4.11
7 109 Treg cells to be obtained with an average purity of 95.75 \ub1 4.38% and can be used in different clinical settings to exploit Treg cell immunomodulatory function. Conclusions: These results could be of great use for facilities implementing GMP-compliant cell therapy protocols of these cells for different conditions aimed at restoring the Treg cell number and function, which may slow the progression of certain diseases
Preliminary data on the structure and potential of the Tocomar geothermal field (Puna plateau, Argentina).
AbstractThis study presents new stratigraphic, structural and hydrogeological data on the Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina), together with preliminary geochemical and magnetotelluric data.The main geothermal reservoir is located within the fractured Pre-Palaeozoic–Ordovician units. The reservoir is recharged by meteoric waters. Geothermal fluids upwell where main regional structures intersect secondary structures associated with the development of the Tocomar basin. Preliminary data indicate a reservoir temperature of ∼ 200° C and a local geothermal gradient of ∼ 130° C/km associated with the Quaternary volcanic activity in the Tocomar area
Geology of La Reforma caldera complex, Baja California, Mexico
A new geological map at 1:50,000 scale of La Reforma Caldera Complex has been produced applying modern survey methodologies to volcanic areas. This map aims to represent a reliable and objective tool to understand the geological evolution of the region. La Reforma Caldera Complex is a Pleistocene nested caldera located in the central part of the Baja California peninsula, Mexico. The twelve formations defined within the Quaternary volcanic record were grouped into three phases (pre-caldera, caldera, and post-caldera). The pre-caldera phase (>1.35 Ma) is characterized by scattered eruptions, mostly occurred in submarine environment. The caldera phase (1.35–0.96 Ma) groups several distinct explosive and effusive eruptions that formed the present-day caldera depression. The post caldera phase includes scattered effusive eruptions (ended at 0.28 Ma) and resurgence, characterized by several hundred meters of uplift of the central block within the caldera depression
Recommended from our members
The QuantuMDx Q-POC SARS-CoV-2 RT-PCR assay for rapid detection of COVID-19 at point-of-care: preliminary evaluation of a novel technology
Abstract: Accurate and rapid point-of-care (PoC) diagnostics are critical to the control of the COVID-19 pandemic. The current standard for accurate diagnosis of SARS-CoV-2 is laboratory-based reverse transcription polymerase chain reaction (RT-PCR) assays. Here, a preliminary prospective performance evaluation of the QuantuMDx Q-POC SARS-CoV-2 RT-PCR assay is reported. Between November 2020 and March 2021, 49 longitudinal combined nose/throat (NT) swabs from 29 individuals hospitalised with RT-PCR confirmed COVID-19 were obtained at St George’s Hospital, London. In addition, 101 mid-nasal (MN) swabs were obtained from healthy volunteers in June 2021. These samples were used to evaluate the Q-POC SARS-CoV-2 RT-PCR assay. The primary analysis was to compare the sensitivity and specificity of the Q-POC test against a reference laboratory-based RT-PCR assay. The overall sensitivity of the Q-POC test compared with the reference test was 96.88% (83.78– 99.92% CI) for a cycle threshold (Ct) cut-off value for the reference test of 35 and 80.00% (64.35–90.95% CI) without altering the reference test’s Ct cut-off value of 40. The Q-POC test is a sensitive, specific and rapid PoC test for SARS-CoV-2 at a reference Ct cut-off value of 35. The Q-POC test provides an accurate option for RT-PCR at PoC without the need for sample pre-processing and laboratory handling, enabling rapid diagnosis and clinical triage in acute care and other settings
- …