1,778 research outputs found

    GaAs-based Self-Aligned Stripe Superluminescent Diodes Processed Normal to the Cleaved Facet

    Get PDF
    We demonstrate GaAs-based superluminescent diodes (SLDs) incorporating a window-like back facet in a self-aligned stripe. SLDs are realised with low spectral modulation depth (SMD) at high power spectral density, without application of anti-reflection coatings. Such application of a window-like facet reduces effective facet reflectivity in a broadband manner. We demonstrate 30mW output power in a narrow bandwidth with only 5% SMD, outline the design criteria for high power and low SMD, and describe the deviation from a linear dependence of SMD on output power as a result of Joule heating in SLDs under continuous wave current injection. Furthermore, SLDs processed normal to the facet demonstrate output powers as high as 20mW, offering improvements in beam quality, ease of packaging and use of real estate. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Z decay into two massless gauge bosons in a magnetic field

    Get PDF
    An investigation of the processes Z to gluon-gluon and Z to photon-photon in a background magnetic field is presented. For homogeneous fields corrections to the charged fermion propagator can be calculated in leading orders of the magnetic field. This work examines the first order contributions of the corrected propagator to decays that are otherwise zero. Results of the decay rates for varying field strengths are included.Comment: 14 pages, 2 figures, needs RevTeX4; typos corrected, appendix added, references added, format changed to preprint mod

    Constraint on the CKM angle alpha from the experimental measurements of CP violation in B_d^0 --> pi^+ pi^- decay

    Full text link
    In this paper, we study and try to find the constraint on the CKM angle alpha from the experimental measurements of CP violation in B_d^0 --> pi^+ pi^- decay, as reported very recently by BaBar and Belle Collaborations. After considering uncertainties of the data and the ratio r of penguin over tree amplitude, we found that strong constraint on both the CKM angle alpha and the strong phase delta can be obtained from the measured CP asymmetries S_{pi pi} and A_{pi pi}: (a) the ranges of 87 degrees <= alpha <= 131 degrees and 36 degrees <= delta <= 144 degrees are allowed by 1 sigma of the averaged data for r = 0.31; (b) for Belle's result alone, the limits on alpha and delta are 104 degrees <= alpha <= 139 degrees and 42 degrees <= delta <= 138 degrees for 0.32 <= r <= 0.41; and (c) the angle alpha larger than 90 degrees is preferred.Comment: Revtex, 17 pages with 6 ps/eps figure files, new Babar data Reported at ICHEP 2002 considere

    The CP-violating asymmetry in \eta\to\pi^+ \pi^- e^+e^-

    Full text link
    We study the CP-violating asymmetry {\cal A}_{\rm CP}, which arises, in \eta\to\pi^+\pi^- e^+e^-, from the angular correlation of the e^+ e^- and \pi^+\pi^- planes due to the interference between the magnetic and electric decay amplitudes. With the phenomenologically determined magnetic amplitude and branching ratio as input, the asymmetry, induced by the electric bremsstrahlung amplitude through the CP-violating decay \eta\to\pi^+\pi^-, and by an unconventional tensor type operator, has been estimated respectively. The upper bound of {\cal A}_{\rm CP} from the former is about 10^{-3}, and the asymmetry from the latter might be up to O(10^{-2}). One can therefore expect that this CP asymmetry would be an interesting CP-violating observable for the future precise measurements in the \eta factories.Comment: LaTeX, 6 pages. One reference corrected, and some new references adde

    The Case for an Accelerating Universe from Supernovae

    Get PDF
    The unexpected faintness of high-redshift Type Ia supernovae (SNe Ia), as measured by two teams, has been interpreted as evidence that the expansion of the Universe is accelerating. We review the current challenges to this interpretation and seek to answer whether the cosmological implications are compelling. We discuss future observations of SNe Ia which could offer extraordinary evidence to test acceleration.Comment: To appear as an Invited Review for PASP 20 pages, 13 figure

    Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes

    Get PDF
    Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivities and expected event rates from astrophysical sources of high-energy neutrinos. We find that an ideal detector of km^2 incident area can be sensitive to a flux of neutrinos integrated over energy from 10^5 and 10^{7} GeV as low as 1.3 * 10^(-8) * E^(-2) (GeV/cm^2 s sr) which is three times smaller than the Waxman-Bachall conservative upper limit on potential neutrino flux. A real detector will have degraded performance. Detection from known point sources is possible but unlikely unless there is prior knowledge of the source location and neutrino arrival time.Comment: Section added +modification

    On the two-photon decay width of the sigma meson

    Full text link
    We shortly report on the two-photon decay width of the light σ\sigma-meson interpreted as a quarkonium state. Results are given in dependence on the σ\sigma-mass and the constituent mass of the light quark. The triangle quark-loop diagram, responsible for the two-photon transition, is carefully evaluated: a term in the transition amplitude, often omitted in literature, results in destructive interference with the leading term. As a result we show that the two-photon decay width of the σ\sigma in the quarkonium picture is less than 1 keV for the physical range of parameters.Comment: 6 pages, 4 figure

    Observational constraints on hyperons in neutron stars

    Full text link
    The possibility that neutron stars may contain substantial hyperon populations has important implications for neutron-star cooling and, through bulk viscosity, the viability of the r-modes of accreting neutron stars as sources of persistent gravitational waves. In conjunction with laboratory measurements of hypernuclei, astronomical observations were used by Glendenning and Moszkowski [Phys. Rev. Lett. 67, 2414 (1991)] to constrain the properties of hyperonic equations of state within the framework of relativistic mean-field theory. We revisit the problem, incorporating recent measurements of high neutron-star masses and a gravitational redshift. We find that only the stiffest of the relativistic hyperonic equations of state commonly used in the literature is compatible with the redshift. However, it is possible to construct stiffer equations of state within the same framework which produce the observed redshift while satisfying the experimental constraints on hypernuclei, and we do this. The stiffness parameter that most affects the redshift is not the incompressibility but rather the hyperon coupling. Nonrelativistic potential-based equations of state with hyperons are not constrained by the redshift, primarily due to a smaller stellar radius.Comment: 8 pages, 5 figures; corrected error in equation three, corrected minor typos, new tables of equations of state added; final version as appearing in PR

    Unknowns after the SNO Charged-Current Measurement

    Get PDF
    We perform a model-independent analysis of solar neutrino flux rates including the recent charged-current measurement at the Sudbury Neutrino Observatory (SNO). We derive a universal sum rule involving SNO and SuperKamiokande rates, and show that the SNO neutral-current measurement can not fix the fraction of solar νe\nu_e oscillating to sterile neutrinos. The large uncertainty in the SSM 8^8B flux impedes a determination of the sterile neutrino fraction.Comment: Version to appear in PRL; includes analysis with anticipated SNO NC measuremen
    corecore