45 research outputs found

    Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO_2 Mixtures

    Get PDF
    Laminar to turbulent transition on a smooth 5-degree half angle cone at zero angle of attack is investigated computationally and experimentally in hypervelocity flows of air, carbon dioxide, and a mixture of 50% air and carbon dioxide by mass. Transition N factors above 10 are observed for air flows. At comparable reservoir enthalpy and pressure, flows containing carbon dioxide are found to transition up to 30% further downstream on the cone than flows in pure air in terms of x-displacement, and up to 38% and 140%, respectively, in terms of the Reynolds numbers calculated at edge and reference conditions

    Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO_2 Mixtures

    Get PDF
    Laminar to turbulent transition on a smooth 5-degree half angle cone at zero angle of attack is investigated computationally and experimentally in hypervelocity flows of air, carbon dioxide, and a mixture of 50% air and carbon dioxide by mass. Transition N factors above 10 are observed for air flows. At comparable reservoir enthalpy and pressure, flows containing carbon dioxide are found to transition up to 30% further downstream on the cone than flows in pure air in terms of x-displacement, and up to 38% and 140%, respectively, in terms of the Reynolds numbers calculated at edge and reference conditions

    Information hazards in biotechnology

    No full text
    With the advance of biotechnology, biological information, rather than biological materials, is increasingly the object of principal security concern. We argue that both in theory and in practice, existing security approaches in biology are poorly suited to manage hazardous biological information, and use the cases of Mousepox, H5N1 gain of function, and Botulinum toxin H to highlight these ongoing challenges. We suggest that mitigation of these hazards can be improved if one can: (1) anticipate hazard potential before scientific work is performed; (2) consider how much the new information would likely help both good and bad actors; and (3) aim to disclose information in the manner that maximally disadvantages bad actors versus good ones

    Antibody tests for COVID-19

    No full text

    Information hazards in biotechnology

    No full text
    With the advance of biotechnology, biological information, rather than biological materials, is increasingly the object of principal security concern. We argue that both in theory and in practice, existing security approaches in biology are poorly suited to manage hazardous biological information, and use the cases of Mousepox, H5N1 gain of function, and Botulinum toxin H to highlight these ongoing challenges. We suggest that mitigation of these hazards can be improved if one can: (1) anticipate hazard potential before scientific work is performed; (2) consider how much the new information would likely help both good and bad actors; and (3) aim to disclose information in the manner that maximally disadvantages bad actors versus good ones
    corecore