874 research outputs found

    A Possibility of large electro-weak penguin contribution in B -> K pi modes

    Full text link
    We discuss about a possibility of large electro-weak penguin contribution in B -> K pi from recent experimental data. The several relations among the branching ratios which realize when the contributions from tree type and electro-weak penguin are small compared with the gluon penguin and can be treated as the expansion parameters do not satisfy the data. The difference comes from the r^2 terms which is the square of the ratio with the gluon penguin and the main contribution comes from electro-weak penguin. We find that the contribution from electro-weak penguin may be large to explain the experimental data. If the magnitude estimated from experiment is quite large compared with the theoretical estimation, then it may be including some new physics effects.Comment: 11 pages, 1 figure, Typos correcte

    Strong and Weak Phases from Time-Dependent Measurements of BππB \to \pi \pi

    Full text link
    Time-dependence in B0(t)π+πB^0(t) \to \pi^+ \pi^- and \ob(t) \to \pi^+ \pi^- is utilized to obtain a maximal set of information on strong and weak phases. One can thereby check theoretical predictions of a small strong phase δ\delta between penguin and tree amplitudes. A discrete ambiguity between δ0\delta \simeq 0 and δπ\delta \simeq \pi may be resolved by comparing the observed charge-averaged branching ratio predicted for the tree amplitude alone, using measurements of BπlνB \to \pi l \nu and factorization, or by direct comparison of parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix with those determined by other means. It is found that with 150 fb1^{-1} from BaBar and Belle, this ambiguity will be resolvable if no direct CP violation is found. In the presence of direct CP violation, the discrete ambiguity between δ\delta and πδ\pi - \delta becomes less important, vanishing altogether as δπ/2|\delta| \to \pi/2. The role of measurements involving the lifetime difference between neutral BB eigenstates is mentioned briefly.Comment: 14 pages, LaTeX, 5 figures, to be published in Phys. Rev. D. Updated version with one reference change

    Measuring γ\gamma in B±K±(KK)DB^\pm \to K^\pm (K K^*)_D decays

    Full text link
    We develop a method to measure the CKM angle γ\gamma without hadronic uncertainties from the analysis of B±K±D0B^\pm \to K^\pm D^0 and K^\pm \D0bar followed by singly Cabibbo-suppressed DD decays to non CP-eigenstates, such as K±KK^\pm K^{*\mp}. This method utilizes the interference between bcuˉsb\to c\bar u s and bucˉsb\to u\bar c s decays, and we point out several attractive features of it. All the modes that need to be measured for this method are accessible in the present data.Comment: 8 page

    Using B_s^0 Decays to Determine the CP Angles \alpha and \gamma

    Full text link
    Dighe, Gronau and Rosner have shown that, by assuming SU(3) flavor symmetry and first-order SU(3) breaking, it is possible to extract the CP angles \alpha and \gamma from measurements of the decay rates of B_d^0(t) --> \pi^+\pi^-, B_d^0 --> \pi^- K^+ and B^+ --> \pi^+ K^0, along with their charge-conjugate processes. We extend their analysis to include the SU(3)-related decays B_s^0 --> \pi^+ K^-, B_s^0(t) --> K^+ K^- and B_s^0 --> K^0 {\bar K^0}. There are several advantages to this extension: discrete ambiguities are removed, fewer assumptions are necessary, and the method works even if all strong phases vanish. In addition, we show that \gamma can be obtained cleanly, with no penguin contamination, by using the two decays B_s^0(t) --> K^+ K^- and B_s^0 --> K^0 {\bar K^0}.Comment: 28 pages, LaTe

    Hunting for the alpha: BρρB\to \rho\rho, BππB \to \pi\pi, BπρB \to\pi\rho

    Full text link
    The hypothesis of the smallness of penguin contribution to charmless strangeless Bd(Bˉd)B_d (\bar B_d) decays allows to determine with high accuracy the value of angle α\alpha from the currently available BρρB \to \rho\rho, BππB \to \pi\pi and BρπB\to \rho\pi decay data.Comment: 9 page

    Using untagged B^0 -> D K_S to determine gamma

    Full text link
    It is shown that the weak phase gamma=arg(-V_{ud}V^*_{ub}V_{cb}V_{cd}^*) can be determined using only untagged decays B/Bbar--> D K_S. In order to reduce the uncertainty in gamma, we suggest combining information from B^{+-}--> DK^{+-} and from untagged B^0 decays, where the D meson is observed in common decay modes. Theoretical assumptions, which may further reduce the statistical error, are also discussed.Comment: 18 pages, same as published versio

    Weak Phase γ\gamma From Ratio of BKπB \to K \pi Rates

    Full text link
    The ratio of partial decay rates for charged and neutral BB mesons to KπK \pi final states provides information on the weak phase γArg(Vub)\gamma \equiv {\rm Arg} (V_{ub}^*) when augmented with information on the CP-violating asymmetry in the K±πK^\pm \pi^\mp mode. The requirements for a useful determination of γ\gamma are examined in the light of present information about the decays B0K+πB^0 \to K^+ \pi^-, B+K0π+B^+ \to K^0 \pi^+, and the corresponding charge-conjugate modes. The effects of electroweak penguins and rescattering corrections are noted, and proposals are made for estimating and measuring their importance.Comment: 16 pages, latex, 3 figures, revised version sent to Phys. Rev.

    Determining γ\gamma using B±DK±B^\pm \to D K^\pm with multibody D decays

    Full text link
    We propose a method for determining γ\gamma using B±DK±B^\pm\to D K^\pm decays followed by a multibody DD decay, such as DKSππ+D \to K_S \pi^-\pi^+, DKSKK+D \to K_S K^-K^+ and DKSππ+π0D \to K_S \pi^-\pi^+\pi^0. The main advantages of the method is that it uses only Cabibbo allowed DD decays, and that large strong phases are expected due to the presence of resonances. Since no knowledge about the resonance structure is needed, γ\gamma can be extracted without any hadronic uncertainty.Comment: 17 pages, 1 figur

    Taming the Penguin in the B0(t) -> Pi+Pi- CP-asymmetry: Observables and Minimal Theoretical Input

    Full text link
    Penguin contributions, being not negligible in general, can hide the information on the CKM angle alpha coming from the measurement of the time-dependent B0(t) -> pi+pi- CP-asymmetry. Nevertheless, we show that this information can be summarized in a set of simple equations, expressing alpha as a multi-valued function of a single theoretically unknown parameter, which conveniently can be chosen as a well-defined ratio of penguin to tree amplitudes. Using these exact analytic expressions, free of any assumption besides the Standard Model, and some reasonable hypotheses to constrain the modulus of the penguin amplitude, we derive several new upper bounds on the penguin-induced shift |2alpha-2alpha_eff|, generalizing the recent result of Grossman and Quinn. These bounds depend on the averaged branching ratios of some decays (pi0pi0, K0K0bar, K+-pi-+) particularly sensitive to the penguin. On the other hand, with further and less conservative approximations, we show that the knowledge of the B+- -> Kpi+- branching ratio alone gives sufficient information to extract the free parameter without the need of other measurements, and without knowing |V_td| or |V_ub|. More generally, knowing the modulus of the penguin amplitude with an accuracy of ~30% might result in an extraction of alpha competitive with the experimentally more difficult isospin analysis. We also show that our framework allows to recover most of the previous approaches in a transparent and simple way, and in some cases to improve them. In addition we discuss in detail the problem of the various kinds of discrete ambiguities.Comment: LaTeX2e, 44 pages, 9 figures (from 18 postscript files) included with epsf. Minor changes, references updated. New CLEO results from ICHEP'98 are taken into account. To appear in Phys. Rev.

    Can One Measure the Weak Phase of a Penguin Diagram?

    Get PDF
    The b -> d penguin amplitude receives contributions from internal u, c and t-quarks. We show that it is impossible to measure the weak phase of any of these penguin contributions without theoretical input. However, it is possible to obtain the weak phase if one makes a single assumption involving the hadronic parameters. With such an assumption, one can test for the presence of new physics in the b -> d flavour-changing neutral current by comparing the weak phase of B_d^0-{\bar B}_d^0 mixing with that of the t-quark contribution to the b -> d penguin.Comment: 20 pages, no figure
    corecore