4 research outputs found
Quick Ultra-VIolet Kilonova surveyor (QUVIK)
We present a near-UV space telescope on a ~70kg micro-satellite with a
moderately fast repointing capability and a near real-time alert communication
system that has been proposed in response to a call for an ambitious Czech
national mission. The mission, which has recently been approved for Phase 0, A,
and B1 study shall measure the brightness evolution of kilonovae, resulting
from mergers of neutron stars in the near-UV band and thus it shall distinguish
between different explosion scenarios. Between the observations of transient
sources, the satellite shall perform observations of other targets of interest,
a large part of which will be chosen in open competition.Comment: SPIE Astronomical Telescopes and Instrumentatio
A Distributed Space-Weather Sensor System using Small Satellites
Space weather is becoming increasingly important for space and terrestrial activities and is likely to transition to an operational service. Small satellites are ideally suited for space-weather measurements given the need for making simultaneous measurements across both small and large volumes of space. The “Nanosatellites for D3S” Phase 0/A study for ESA was initiated in early 2021 with the objective to assess the feasibility of using nanosatellites for future operational space weather monitoring missions in near-Earth space as part of ESA's Distributed Space Weather Sensor System (D3S) - which itself forms part of the wider ESA Enhanced Space Weather Monitoring System. The study team consortium is highly experienced including sub-contractors supporting SSTL from MSSL, Imperial College London, and VZLU. Surrey Space Centre and Northumbria University are also providing expert consultancy. In the first part of the Phase 0 study, a survey of the measurement requirements and potential space weather instruments was carried out, alongside an investigation into recent relevant nanosatellite missions and future nanosatellite technologies. This was followed by an analysis and trade-off of high level mission architecture concepts eventually converging down to two of the most promising mission architecture concepts, which were further analysed in the latter half of the Phase 0 study. The objective of the first Phase 0 mission architecture concept was to provide near-real time measurements of radiation, thermal plasma and Ionospheric neutrals/plasma, via a constellation of 20x SSTL-21 satellites, in a single LEO orbital plane. The objective of the second Phase 0 mission architecture concept was to provide near-real time measurements of radiation, the Ionosphere and the Thermosphere, via a constellation of 6x 16U SSTL-Cube satellites, in a single LEO orbital plane. The orbit selected for both missions was a 500-600km Sun-Synchronous LEO Orbit with an LTAN of 10:30am. Both missions assumed an operational in-orbit spare satellite. The estimated launch date assumed for the missions was 2025. The Phase 0 study was completed in March earlier this year, with ESA selecting the second mission architecture concept to take through into the Phase A study, which kicked off straight after completion of the Phase 0 study. This paper mainly describes the details of the Phase 0 study, as well as touching on the current status of the Phase A study
Science with a small two-band UV-photometry mission I: Mission description and follow-up observations of stellar transients
This is the first in a collection of three papers introducing the science
with an ultra-violet (UV) space telescope on an approximately 100 kg small
satellite with a moderately fast re-pointing capability and a real-time alert
communication system that is being studied for a Czech national space mission.
The mission, called Quick Ultra-Violet Kilonova surveyor - QUVIK, will provide
key follow-up capabilities to increase the discovery potential of gravitational
wave observatories and future wide-field multi-wavelength surveys. The primary
objective of the mission is the measurement of the UV brightness evolution of
kilonovae, resulting from mergers of neutron stars, to distinguish between
different explosion scenarios. The mission, which is designed to be
complementary to the Ultraviolet Transient Astronomy Satellite - ULTRASAT, will
also provide unique follow-up capabilities for other transients both in the
near- and far-UV bands. Between the observations of transients, the satellite
will target other objects described in this collection of papers, which
demonstrates that a small and relatively affordable dedicated UV-space
telescope can be transformative for many fields of astrophysics.Comment: Submitted to Space Science Review
Science with a small two-band UV-photometry mission I: Mission description and follow-up observations of stellar transients
This is the first in a collection of three papers introducing the science with an ultra-violet (UV) space telescope on an approximately 100 kg small satellite with a moderately fast re-pointing capability and a real-time alert communication system that is being studied for a Czech national space mission. The mission, called Quick Ultra-Violet Kilonova surveyor - QUVIK, will provide key follow-up capabilities to increase the discovery potential of gravitational wave observatories and future wide-field multi-wavelength surveys. The primary objective of the mission is the measurement of the UV brightness evolution of kilonovae, resulting from mergers of neutron stars, to distinguish between different explosion scenarios. The mission, which is designed to be complementary to the Ultraviolet Transient Astronomy Satellite - ULTRASAT, will also provide unique follow-up capabilities for other transients both in the near- and far-UV bands. Between the observations of transients, the satellite will target other objects described in this collection of papers, which demonstrates that a small and relatively affordable dedicated UV-space telescope can be transformative for many fields of astrophysics