2 research outputs found

    Luminous Type II Short-Plateau Supernovae 2006Y, 2006ai, and 2016egz: A Transitional Class from Stripped Massive Red Supergiants

    Get PDF
    The diversity of Type II supernovae (SNe II) is thought to be driven mainly by differences in their progenitor's hydrogen-rich (H-rich) envelope mass, with SNe IIP having long plateaus (similar to 100 days) and the most massive H-rich envelopes. However, it is an ongoing mystery why SNe II with short plateaus (tens of days) are rarely seen. Here, we present optical/near-infrared photometric and spectroscopic observations of luminous Type II short-plateau SNe 2006Y, 2006ai, and 2016egz. Their plateaus of about 50-70 days and luminous optical peaks (less than or similar to-18.4 mag) indicate significant pre-explosion mass loss resulting in partially stripped H-rich envelopes and early circumstellar material (CSM) interaction. We compute a large grid of MESA+STELLA single-star progenitor and light-curve models with various progenitor zero-age main-sequence (ZAMS) masses, mass-loss efficiencies, explosion energies, Ni-56 masses, and CSM densities. Our model grid shows a continuous population of SNe IIP-IIL-IIb-like light-curve morphology in descending order of H-rich envelope mass. With large Ni-56 masses (greater than or similar to 0.05M(circle dot)), short-plateau SNe II lie in a confined parameter space as a transitional class between SNe IIL and IIb. For SNe 2006Y, 2006ai, and 2016egz, our findings suggest high-mass red supergiant (RSG) progenitors (M-ZAMS similar or equal to 18-22M(circle dot)) with small H-rich envelope masses (M-Henv similar or equal to 1.7 M-circle dot) that have experienced enhanced mass loss (M similar or equal to 10(-2) M-circle dot yr(-1)) for the last few decades before the explosion. If high-mass RSGs result in rare short-plateau SNe II, then these events might ease some of the apparent underrepresentation of higher-luminosity RSGs in observed SN II progenitor samples

    Long-term follow-up observations of extreme coronal line emitting galaxies

    Get PDF
    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line-emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the non-recurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines consistent with power-law decay. The remaining two objects had been classified as active galactic nuclei (AGNs) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability
    corecore