10 research outputs found

    Association News

    No full text

    Purinergic receptors in the endocrine and exocrine pancreas

    Get PDF
    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In ÎČ cells, stimulation of P2Y1 receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y1 receptors, there is also evidence for other P2 and adenosine receptors in ÎČ cells (P2Y2, P2Y4, P2Y6, P2X subtypes and A1 receptors) and in glucagon-secreting α cells (P2X7, A2 receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y2, P2Y4, P2Y11, P2X4 and P2X7 receptors could regulate secretion, primarily by affecting Cl− and K+ channels and intracellular Ca2+ signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases

    Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes.

    No full text
    Islet dysfunction - characterized by a combination of defective insulin secretion, inappropriately high glucagon secretion and reduced beta-cell mass - has a central role in the pathophysiology of type 2 diabetes. Several G protein-coupled receptors (GPCRs) expressed in islet beta-cells are known to be involved in the regulation of islet function, and therefore are potential therapeutic targets. This is evident from the recent success of glucagon-like peptide 1 (GLP1) mimetics and dipeptidyl peptidase 4 (DPP4) inhibitors, which promote activation of the GLP1 receptor to stimulate insulin secretion and inhibit glucagon secretion, and also have the potential to increase beta-cell mass. Other islet beta-cell GPCRs that are involved in the regulation of islet function include the glucose-dependent insulinotropic peptide (GIP) receptor, lipid GPCRs, pleiotropic peptide GPCRs and islet biogenic amine GPCRs. This Review summarizes islet GPCR expression, signalling and function, and highlights their potential as targets for the treatment of type 2 diabetes

    Current understanding of KATP channels in neonatal diseases: focus on insulin secretion disorders

    No full text

    Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes

    No full text
    corecore