1,341 research outputs found

    Analytical prediction of stress and strain in adhesive tube-to-tube joints under thermal expansion/contraction

    Get PDF
    Adhesive joints are widely applied and studied for various industrial applications. The interest in adhesive joints has expanded to include heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems having a significant number of joints employed for manufacturing. This study investigates an analytical modeling approach for predicting joint stress and strain distribution under static loading with thermal strain. A review of modeling techniques identified the need to develop a joint analytical model under loading conditions representative of HVAC&R applications. The details of the model, governing equations, assumptions, boundary conditions, and solution techniques are first reported. The model is validated via comparison to existing results before performing parametric studies to provide insights on the influences of thermal expansion and inner tube pressure on possible failure. It is found that the joint overlap length plays an important role in stress distribution, while the adhesive thickness has less impact. Overall, the results indicate that static loading failure is not likely a concern for joints in HVAC&R systems, but the thermal strain and stress induced by temperature fluctuations must be carefully considered. This modeling effort establishes a framework that can be used to generate criteria and instructions on designing adhesive joints across different HVAC&R</p

    Multi-objective Optimization of Sustainable Single-Effect Water/Lithium Bromide Absorption Cycle

    Get PDF
    A rigorous mathematical approach is developed for optimization of sustainable single-effect water/ Lithium Bromide (LiBr) absorption cooling cycles. The multi-objective formulation accounts for minimization of the chiller area as well as the environmental impact associated with the operation of the absorption cycle. The environmental impact is quantified based on the global warming potential and the Eco-indicator 99, both of which follow principles of life cycle assessment. The design task is formulated as a bi-criterion non-linear programming problem, the solution of which is defined by a set of Pareto points that represent the optimal compromise between the total area of the chiller and global warming potential. These Pareto sets are obtained via the epsilon constraint method. A set of design alternatives are provided for the absorption cycles rather than a single design; the best design can be chosen from this set based on the major constraints and benefits in a given application. The proposed approach is illustrated design of a typical absorption cooling cycle

    Prediction of Air-Side Particulate Fouling of HVAC&R Heat Exchangers

    Get PDF
    Air-to-refrigerant heat exchangers used in heating, ventilation, air-conditioning, and refrigeration systems routinely experience air-side fouling due to the presence of particulates in outdoor and indoor environments. The influence on the performance of the heat exchanger, in terms of heat transfer efficiency and pressure drop imposed, depends on the extent of air-side fouling. Fouling of a heat exchanger is determined by a variety of parameters such as the dimensions of the heat exchanger, physical properties of the airborne particulates, and airflow conditions over the heat exchange surfaces. A comprehensive model is developed to deterministically calculate the extent of fouling of a heat exchanger as a function of these parameters by accounting for each of the possible deposition mechanisms. The study enhances modeling approaches previously employed in the literature by accounting for time-dependent accumulation of particles as well as the effects of the streamwise distribution of accumulated dust on subsequent fouling; the calculations for the deposition due to several of the mechanisms are also refined to improve prediction accuracy. Particulate matter deposits already present on the surface are found to accelerate the process of fouling by decreasing available area for airflow; an existing deposit layer effectively decreases the distance that a particle must travel to collide with a surface and increases the surface area available for deposition. The modified model predictions are compared against extant experimental deposition fraction data; an improved agreement is observed compared to previous models in the literature

    Epidemiology of Invasive Fungal Disease in Children

    Get PDF
    Financial support. A.W. is supported by the Wellcome Trust Strategic Award (grant 097377) and the MRC Centre for Medical Mycology at University of Aberdeen (grant MR/N006364/1). Supplement sponsorship. This article appears as part of the supplement “State of the Art Diagnosis of Pediatric Invasive Fungal Disease: Recommendations From the Joint European Organization for the Treatment of Cancer/Mycoses Study Group (EORTC/MSG) Pediatric Committee,” sponsored by Astellas.Peer reviewedPostprin

    Editorial.

    Get PDF
    Groll, Eckhard K., Dathe, Holger H. (2013): Editorial. Beiträge Zur Entomologie = Contributions to Entomology 63 (2): 201-203, DOI: 10.21248/contrib.entomol.63.2.201-203, URL: http://dx.doi.org/10.21248/contrib.entomol.63.2.201-20

    Editorial - In eigener Sache.

    Get PDF
    Dathe, H.H., Groll, E.K. (2006): Editorial - In eigener Sache. Beiträge Zur Entomologie = Contributions to Entomology 56 (1): 1-4, DOI: 10.21248/contrib.entomol.56.1.1-4, URL: https://www.contributions-to-entomology.org/article/view/164

    Editorial.

    Get PDF

    Editorial.

    Get PDF

    Treatment and timing in invasive mould disease

    Get PDF
    Invasive mould disease is a growing threat for immunocompromised patients. The optimum time to use mould-active antifungal agents is much debated. Current approaches to antifungal prophylaxis, early treatment (empirical and pre-emptive therapy) and treatment of documented mould infections in onco-haematology patients are discusse
    corecore