53 research outputs found

    Disaster Data Management in Cloud Environments

    Get PDF
    Facilitating decision-making in a vital discipline such as disaster management requires information gathering, sharing, and integration on a global scale and across governments, industries, communities, and academia. A large quantity of immensely heterogeneous disaster-related data is available; however, current data management solutions offer few or no integration capabilities and limited potential for collaboration. Moreover, recent advances in cloud computing, Big Data, and NoSQL have opened the door for new solutions in disaster data management. In this thesis, a Knowledge as a Service (KaaS) framework is proposed for disaster cloud data management (Disaster-CDM) with the objectives of 1) facilitating information gathering and sharing, 2) storing large amounts of disaster-related data from diverse sources, and 3) facilitating search and supporting interoperability and integration. Data are stored in a cloud environment taking advantage of NoSQL data stores. The proposed framework is generic, but this thesis focuses on the disaster management domain and data formats commonly present in that domain, i.e., file-style formats such as PDF, text, MS Office files, and images. The framework component responsible for addressing simulation models is SimOnto. SimOnto, as proposed in this work, transforms domain simulation models into an ontology-based representation with the goal of facilitating integration with other data sources, supporting simulation model querying, and enabling rule and constraint validation. Two case studies presented in this thesis illustrate the use of Disaster-CDM on the data collected during the Disaster Response Network Enabled Platform (DR-NEP) project. The first case study demonstrates Disaster-CDM integration capabilities by full-text search and querying services. In contrast to direct full-text search, Disaster-CDM full-text search also includes simulation model files as well as text contained in image files. Moreover, Disaster-CDM provides querying capabilities and this case study demonstrates how file-style data can be queried by taking advantage of a NoSQL document data store. The second case study focuses on simulation models and uses SimOnto to transform proprietary simulation models into ontology-based models which are then stored in a graph database. This case study demonstrates Disaster-CDM benefits by showing how simulation models can be queried and how model compliance with rules and constraints can be validated

    Autonomous Unmanned Aerial Vehicle Navigation using Reinforcement Learning: A Systematic Review

    Get PDF
    There is an increasing demand for using Unmanned Aerial Vehicle (UAV), known as drones, in different applications such as packages delivery, traffic monitoring, search and rescue operations, and military combat engagements. In all of these applications, the UAV is used to navigate the environment autonomously --- without human interaction, perform specific tasks and avoid obstacles. Autonomous UAV navigation is commonly accomplished using Reinforcement Learning (RL), where agents act as experts in a domain to navigate the environment while avoiding obstacles. Understanding the navigation environment and algorithmic limitations plays an essential role in choosing the appropriate RL algorithm to solve the navigation problem effectively. Consequently, this study first identifies the main UAV navigation tasks and discusses navigation frameworks and simulation software. Next, RL algorithms are classified and discussed based on the environment, algorithm characteristics, abilities, and applications in different UAV navigation problems, which will help the practitioners and researchers select the appropriate RL algorithms for their UAV navigation use cases. Moreover, identified gaps and opportunities will drive UAV navigation research

    Agglomerative Hierarchical Clustering with Dynamic Time Warping for Household Load Curve Clustering

    Get PDF
    Energy companies often implement various demand response (DR) programs to better match electricity demand and supply by offering the consumers incentives to reduce their demand during critical periods. Classifying clients according to their consumption patterns enables targeting specific groups of consumers for DR. Traditional clustering algorithms use standard distance measurement to find the distance between two points. The results produced by clustering algorithms such as K-means, K-medoids, and Gaussian Mixture Models depend on the clustering parameters or initial clusters. In contrast, our methodology uses a shape-based approach that combines Agglomerative Hierarchical Clustering (AHC) with Dynamic Time Warping (DTW) to classify residential households\u27 daily load curves based on their consumption patterns. While DTW seeks the optimal alignment between two load curves, AHC provides a realistic initial clusters center. In this paper, we compare the results with other clustering algorithms such as K-means, K-medoids, and GMM using different distance measures, and we show that AHC using DTW outperformed other clustering algorithms and needed fewer clusters

    Reinforcement Learning Algorithms: An Overview and Classification

    Get PDF
    The desire to make applications and machines more intelligent and the aspiration to enable their operation without human interaction have been driving innovations in neural networks, deep learning, and other machine learning techniques. Although reinforcement learning has been primarily used in video games, recent advancements and the development of diverse and powerful reinforcement algorithms have enabled the reinforcement learning community to move from playing video games to solving complex real-life problems in autonomous systems such as self-driving cars, delivery drones, and automated robotics. Understanding the environment of an application and the algorithms’ limitations plays a vital role in selecting the appropriate reinforcement learning algorithm that successfully solves the problem on hand in an efficient manner. Consequently, in this study, we identify three main environment types and classify reinforcement learning algorithms according to those environment types. Moreover, within each category, we identify relationships between algorithms. The overview of each algorithm provides insight into the algorithms’ foundations and reviews similarities and differences among algorithms. This study provides a perspective on the field and helps practitioners and researchers to select the appropriate algorithm for their use case

    Deep Learning: Edge-Cloud Data Analytics for IoT

    Get PDF
    Sensors, wearables, mobile and other Internet of Thing (IoT) devices are becoming increasingly integrated in all aspects of our lives. They are capable of collecting massive quantities of data that are typically transmitted to the cloud for processing. However, this results in increased network traffic and latencies. Edge computing has a potential to remedy these challenges by moving computation physically closer to the network edge where data are generated. However, edge computing does not have sufficient resources for complex data analytics tasks. Consequently, this paper investigates merging cloud and edge computing for IoT data analytics and presents a deep learning-based approach for data reduction on the edge with the machine learning on the cloud. The encoder part of the autoencoder is located on the edge to reduce data dimensions. Reduced data are sent to the cloud where there are used directly for machine learning or expanded to original features using the decoder part of the autoencoder. The proposed approach has been evaluated on the human activity recognition tasks. Results show that 50% data reduction did not have a significant impact on the classification accuracy and 77% reduction only caused 1% change

    Autonomic Database Management: State of the Art and Future Trends

    Get PDF
    In recent years, Database Management Systems (DBMS) have increased significantly in size and complexity, increasing the extent to which database administration is a time-consuming and expensive task. Database Administrator (DBA) expenses have become a significant part of the total cost of ownership. This results in the need to develop Autonomous Database Management systems (ADBMS) that would manage themselves without human intervention. Accordingly, this paper evaluates the current state of autonomous database systems and identifies gaps and challenges in the achievement of fully autonomic databases. In addition to highlighting technical challenges and gaps, we identify one human factor, gaining the trust of DBAs, as a major obstacle. Without human acceptance and trust, the goal of achieving fully autonomic databases cannot be realized

    Virtual Sensor Middleware: Managing IoT Data for the Fog-Cloud Platform

    Get PDF
    This paper introduces the Virtual Sensor Middleware (VSM), which facilitates distributed sensor data processing on multiple fog nodes. VSM uses a Virtual Sensor as the core component of the middleware. The virtual sensor concept is redesigned to support functionality beyond sensor/device virtualization, such as deploying a set of virtual sensors to represent an IoT application and distributed sensor data processing across multiple fog nodes. Furthermore, the virtual sensor deals with the heterogeneous nature of IoT devices and the various communication protocols using different adapters to communicate with the IoT devices and the underlying protocol. VSM uses the publish-subscribe design pattern to allow virtual sensors to receive data from other virtual sensors for seamless sensor data consumption without tight integration among virtual sensors, which reduces application development efforts. Furthermore, VSM enhances the design of virtual sensors with additional components that support sharing of data in dynamic environments where data receivers may change over time, data aggregation is required, and dealing with missing data is essential for the applications

    Edge-Cloud Computing for IoT Data Analytics: Embedding Intelligence in the Edge with Deep Learning

    Get PDF
    Rapid growth in numbers of connected devices including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for ML tasks. Consequently, this paper aims to combine edge and cloud computing for IoT data analytics by taking advantage of edge nodes to reduce data transfer. In order to process data close to the source, sensors are grouped according to locations, and feature learning is performed on the close by edge node. For comparison reasons, similarity-based processing is also considered. Feature learning is carried out with deep learning: the encoder part of the trained autoencoder is placed on the edge and the decoder part is placed on the cloud. The evaluation was performed on the task of human activity recognition from sensor data. The results show that when sliding windows are used in the preparation step, data can be reduced on the edge up to 80% without significant loss in accuracy

    Forecasting Building Energy Consumption with Deep Learning: A Sequence to Sequence Approach

    Get PDF
    Energy Consumption has been continuously increasing due to the rapid expansion of high-density cities, and growth in the industrial and commercial sectors. To reduce the negative impact on the environment and improve sustainability, it is crucial to efficiently manage energy consumption. Internet of Things (IoT) devices, including widely used smart meters, have created possibilities for energy monitoring as well as for sensor based energy forecasting. Machine learning algorithms commonly used for energy forecasting such as feedforward neural networks are not well-suited for interpreting the time dimensionality of a signal. Consequently, this paper uses Recurrent Neural Networks (RNN) to capture time dependencies and proposes a novel energy load forecasting methodology based on sample generation and Sequence-to-Sequence (S2S) deep learning algorithm. The S2S architecture that is commonly used for language translation was adapted for energy load forecasting. Experiments focus on Gated Recurrent Unit (GRU) based S2S models and Long Short-Term Memory (LSTM) based S2S models. All models were trained and tested on one building-level electrical consumption dataset, with five-minute incremental data. Results showed that, on average, the GRU S2S models outperformed LSTM S2S, RNN S2S, and Deep Neural Network models, for short, medium, and long-term forecasting lengths

    Energy Consumption Prediction with Big Data: Balancing Prediction Accuracy and Computational Resources

    Get PDF
    In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is not a novel concept, it has great potential in the Big Data domain because it reduces computational complexity. The local SVR approach presented here is compared to traditional SVR and to deep neural networks with an H2O machine learning platform for Big Data. Local SVR outperformed both SVR and H2O deep learning in terms of prediction accuracy and computation time. Especially significant was the reduction in training time; local SVR training was an order of magnitude faster than SVR or H2O deep learning
    • …
    corecore