941 research outputs found
Pneumatic capillary gun for ballistic delivery of microparticles
A pneumatic gun for ballistic delivery of microparticles to soft targets is
proposed and demonstrated. The particles are accelerated by a high speed flow
of Helium in a capillary tube. Vacuum suction applied to a concentric, larger
diameter tube is used to divert substantially all of the flow of Helium from
the gun nozzle, thereby preventing the gas from hitting and damaging the
target. Speed of ejection of micron-sized gold particles from the gun nozzle,
and their depth of penetration into agarose gels are reported.Comment: 7 pages, 3 figure
"Quantumness" versus "classicality" of quantum states and quantum protocols
Entanglement is one of the pillars of quantum mechanics and quantum information processing, and as a result, the quantumness of nonentangled states has typically been overlooked and unrecognized until the last decade. We give a robust definition for the classicality versus quantumness of a single multipartite quantum state, a set of states, and a protocol using quantum states. We show a variety of nonentangled (separable) states that exhibit interesting quantum properties, and we explore the "zoo" of separable states; several interesting subclasses are defined based on the diagonalizing bases of the states, and their nonclassical behavior is investigated.The work of BG was funded by EPSRC and Sidney Sussex College, Cambridge. T.M was funded by the Wolfson Foundation and the Israeli MOD Research and Technology Unit. AB and TM were partly supported The Gerald Schwartz & Heather Reis- man Foundation
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Stretching of polymers in a random three-dimensional flow
Behavior of a dilute polymer solution in a random three-dimensional flow with
an average shear is studied experimentally. Polymer contribution to the shear
stress is found to be more than two orders of magnitude higher than in a
laminar shear flow. The results indicate that the polymer molecules get
strongly stretched by the random motion of the fluid.Comment: 4 pages, 3 figure
Remote operations and interactions for systems of arbitrary dimensional Hilbert space: a state-operator approach
We present a systematic simple method for constructing deterministic remote
operations on single and multiple systems of arbitrary discrete dimensionality.
These operations include remote rotations, remote interactions and
measurements. The resources needed for an operation on a two-level system are
one ebit and a bidirectional communication of two cbits, and for an n-level
system, a pair of entangled n-level particles and two classical ``nits''. In
the latter case, there are possible distinct operations per one n-level
entangled pair. Similar results apply for generating interaction between a pair
of remote systems and for remote measurements. We further consider remote
operations on spatially distributed systems, and show that the number of
possible distinct operations increases here exponentially, with the available
number of entangled pairs that are initial distributed between the systems. Our
results follow from the properties of a hybrid state-operator object
(``stator''), which describes quantum correlations between states and
operations.Comment: 18 pages, 3 figures, typo correction
Backward Evolving Quantum States
The basic concept of the two-state vector formalism, which is the time
symmetric approach to quantum mechanics, is the backward evolving quantum
state. However, due to the time asymmetry of the memory's arrow of time, the
possible ways to manipulate a backward evolving quantum state differ from those
for a standard, forward evolving quantum state. The similarities and the
differences between forward and backward evolving quantum states regarding the
no-cloning theorem, nonlocal measurements, and teleportation are discussed. The
results are relevant not only in the framework of the two-state vector
formalism, but also in the framework of retrodictive quantum theory.Comment: Contribution to the J.Phys. A special issue in honor of GianCarlo
Ghirard
Phase transition in a spring-block model of surface fracture
A simple and robust spring-block model obeying threshold dynamics is
introduced to study surface fracture of an overlayer subject to stress induced
by adhesion to a substrate. We find a novel phase transition in the crack
morphology and fragment-size statistics when the strain and the substrate
coupling are varied. Across the transition, the cracks display in succession
short-range, power-law and long-range correlations. The study of stress release
prior to cracking yields useful information on the cracking process.Comment: RevTeX, 4 pages, 4 Postscript figures included using epsfi
Solitary coherent structures in viscoelastic shear flow: computation and mechanism
Starting from stationary bifurcations in Couette-Dean flow, we compute
nontrivial stationary solutions in inertialess viscoelastic circular Couette
flow. These solutions are strongly localized vortex pairs, exist at arbitrarily
large wavelengths, and show hysteresis in the Weissenberg number, similar to
experimentally observed ``diwhirl'' patterns. Based on the computed velocity
and stress fields, we elucidate a heuristic, fully nonlinear mechanism for
these flows. We propose that these localized, fully nonlinear structures
comprise fundamental building blocks for complex spatiotemporal dynamics in the
flow of elastic liquids.Comment: 5 pages text and 4 figures. Submitted to Physical Review Letter
Statistical properties of fractures in damaged materials
We introduce a model for the dynamics of mud cracking in the limit of of
extremely thin layers. In this model the growth of fracture proceeds by
selecting the part of the material with the smallest (quenched) breaking
threshold. In addition, weakening affects the area of the sample neighbour to
the crack. Due to the simplicity of the model, it is possible to derive some
analytical results. In particular, we find that the total time to break down
the sample grows with the dimension L of the lattice as L^2 even though the
percolating cluster has a non trivial fractal dimension. Furthermore, we obtain
a formula for the mean weakening with time of the whole sample.Comment: 5 pages, 4 figures, to be published in Europhysics Letter
- …