15 research outputs found

    Evaluation of some properties of an opaque porcelain fired simultaneously with the body porcelain,

    Full text link
    Recently, a porcelain-fused-to-metal opaque porcelain was introduced that does not require a separate firing before application of the body porcelain. The objective of this study was to determine the properties of this new opaque porcelain and its ability to bond to metal. The properties studied included flexural strength, linear firing shrinkage, coefficient of thermal expansion, powder particle size, and ability to bond to body porcelain and dental alloys. Sintering of this opaque porcelain was complete when fired at 1760 [deg] F (960 [deg] C) with a linear firing shrinkage of 13.1% +/- 0.2%. No boundary between the opaque and body porcelains could be found with a scanning electron microscope after firing at 1760 [deg] F (960 [deg] C). The mean flexural strengths were 99 +/- 7 and 101 +/- 8 MPa respectively, for this opaque porcelain and a conventional opaque porcelain, and were not significantly different as assessed with Student's t-test (p = 0.548). The coefficient of thermal expansion for this opaque porcelain was 13.3 +/- 0.2 x 10-6/ [deg] C. Particle size analysis showed a 63% increase in the particles below 5 [mu]m for this opaque porcelain and bonding to two alloys was adequate as indicated by its cohesive failure. Simultaneous firing of this special opaque porcelain and body porcelain produced satisfactory sintering, strength, and bonding to metal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31266/1/0000172.pd

    A one-dimensional color order system for dental shade guides

    Full text link
    The purpose of this study was to re-arrange the master Bioform shade guide into a long-range one-dimensional color system based upon color difference. Although most shade guides may show local order when arranged according to hue, long-range order has not been established. However, shade guide arrangement according to a logical color order would be an advantage to the user. The first step in determining the color order was to measure the color of the shade guide teeth. A methodology was developed for measuring the color by use of a reflectance spectrophotometer. The precision of measurement was determined to be equal to CIE L*a*b* [Delta]E of 0.5. Spectra were obtained and converted into CIE L*a*b* and Munsell notation. The measured colors of the Bioform shades ranged from a Munsell hue of 0.9 Y to 3.5 Y; a value of 6.6 to 7.8; and a chroma of 1.9 to 4.1. The teeth were then arranged visually from light to dark. The correlation coefficient between the visual ranking and color difference was 0.95. There was an inverse correlation between visual ranking and Munsell value, with a correlation coefficient of 0.90. Therefore, the sequence according to color difference provided the better agreement with visual perception.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27704/1/0000090.pd

    Effect of parallel surface cuts on bonding to dentine

    Full text link
    The strength of adhesive joints has been found to result from combinations of micromechanical, chemical and diffusion components depending on the system1. The development of adhesives that bond dental restorative materials to human dentine has been a major advance in the science of dental materials. The purpose of this investigation was to study the contribution of parallel surface cuts on the joint strength of dentine adhesives. Half of the specimens were finished with 60 grit SiC paper as a control. The other half were polished with 600 grit SiC paper and then finished with an instrument that produced a series of parallel surface cuts. A two-way analysis of variance showed that both the surface preparation and the adhesive system had a significant effect on shear bond strength (p < 0.0001). In general, the samples finished with parallel surface cuts gave shear bond strength values about double those finished with silicon carbide alone. For those control samples prepared with a 60 grit surface, the predominant type of failure was at the tooth/adhesive interface. The majority of samples with parallel surface cuts failed cohesively within the adhesive system. The experimental instrument is designed to produce retentive grooves or undercuts in the dentine surface which enhance micromechanical adhesion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31465/1/0000387.pd

    Sources of color variation on firing porcelain

    Full text link
    The final color matching of porcelain crowns depends upon the accuracy of the original shade matching by the dentist and variables introduced during processing. Possible sources of processing variables include thickness and color of the opaque, thickness, color, and translucency of the body and enamel layers, firing temperature, and number of firings (Miller, 1987). These processing variables can lead to an error in shade match. The purpose of this study was to quantify, in CIE [Delta]E units: (1) the shade variations when the same batches are fired, (2) the shade variations between different batches, and (3) the differences in color produced by the multiple firing. Three lots of six shades of four commercial brands were included in this study. The color variation of the opaque samples (mean [Delta]E was 0.46) was generally lower than that of the body/opaque samples (mean [Delta]E was 0.86). The average color variation for three different batches of the body/opaque samples was 1.44. The average color difference produced as a result of multiple firings was 1.00 after six firings, compared with the color after three firings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29247/1/0000304.pd

    The strengthening mechanism of a magnesia core ceramic

    Full text link
    A high-expansion core material containin magnesia and forsterite may be used to make all-ceramic dental crowns with porcelain-fused-to-metal body porcelains. The purpose of this study was to investigate the strengthening mechanism for the magnesia core material. Six batches of the magnesia core material were made by reacting magnesia with a silica glass with holding times ranging from 17 to 120 min. The flexural strength was measured using three-point loading according to the ISO specification for dental ceramics. The forsterite content was measured using quantitative x-ray diffraction. A statistically significant correlation was found between the forsterite content and flexural strength. The proposed mechanism for strengthening is the precipitation of fine forsterite crystals in the glass matrix surrounding unreacted magnesia. Longer reaction times produced more dissolution of magnesia and subsequent precipitation of forsterite. This method results in a new strengthening mechanism for dental ceramics which have previously relied on the incorporation of alumina, leucite or ceramic whiskers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30708/1/0000354.pd

    Optical characterization of the SPT-3G camera

    Get PDF
    The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ∼ ∼ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers

    Fabrication of detector arrays for the SPT-3G receiver

    Get PDF
    The South Pole Telescope third-generation (SPT-3G) receiver was installed during the austral summer of 2016–2017. It is designed to measure the cosmic microwave background across three frequency bands centered at 95, 150, and 220 GHz. The SPT-3G receiver has ten focal plane modules, each with 269 pixels. Each pixel features a broadband sinuous antenna coupled to a niobium microstrip transmission line. In-line filters define the desired band-passes before the signal is coupled to six bolometers with Ti/Au/Ti/Au transition edge sensors (three bands × × two polarizations). In total, the SPT-3G receiver is composed of 16,000 detectors, which are read out using a 68× × frequency-domain multiplexing scheme. In this paper, we present the process employed in fabricating the detector arrays

    On-sky performance of the SPT-3G frequency-domain multiplexed readout

    Get PDF
    Frequency-domain multiplexing (fMux) is an established technique for the readout of large arrays of transition-edge sensor (TES) bolometers. Each TES in a multiplexing module has a unique AC voltage bias that is selected by a resonant filter. This scheme enables the operation and readout of multiple bolometers on a single pair of wires, reducing thermal loading onto sub-Kelvin stages. The current receiver on the South Pole Telescope, SPT-3G, uses a 68x fMux system to operate its large-format camera of ∼ ∼ 16,000 TES bolometers. We present here the successful implementation and performance of the SPT-3G readout as measured on-sky. Characterization of the noise reveals a median pair-differenced 1/f knee frequency of 33 mHz, indicating that low-frequency noise in the readout will not limit SPT-3G’s measurements of sky power on large angular scales. Measurements also show that the median readout white noise level in each of the SPT-3G observing bands is below the expectation for photon noise, demonstrating that SPT-3G is operating in the photon-noise-dominated regime

    Impact of electrical contacts design and materials on the stability of Ti superconducting transition shape

    Get PDF
    The South Pole Telescope SPT-3G camera utilizes Ti/Au transition edge sensors (TESs). A key requirement for these sensors is reproducibility and long-term stability of the superconducting (SC) transitions. Here, we discuss the impact of electrical contacts design and materials on the shape of the SC transitions. Using scanning electron microscope, atomic force microscope, and optical differential interference contrast microscopy, we observed the presence of unexpected defects of morphological nature on the titanium surface and their evolution in time in proximity to Nb contacts. We found direct correlation between the variations of the morphology and the SC transition shape. Experiments with different diffusion barriers between TES and Nb leads were performed to clarify the origin of this problem. We have demonstrated that the reproducibility of superconducting transitions can be significantly improved by preventing diffusion processes in the TES–leads contact areas

    Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model

    Get PDF
    The third-generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5× expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope
    corecore