13 research outputs found

    Evaluating a cardiovascular disease risk management care continuum within a learning healthcare system: a prospective cohort study

    Get PDF
    Background: Many patients now present with multimorbidity and chronicity of disease. This means that multidisciplinary management in a care continuum, integrating primary care and hospital care services, is needed to ensure high quality care. Aim: To evaluate cardiovascular risk management (CVRM) via linkage of health data sources, as an example of a multidisciplinary continuum within a learning healthcare system (LHS). Design & setting: In this prospective cohort study, data were linked from the Utrecht Cardiovascular Cohort (UCC) to the Julius General Practitioners' Network (JGPN) database. UCC offers structured CVRM at referral to the University Medical Centre (UMC) Utrecht. JGPN consists of electronic health record (EHR) data from referring GPs. Method: The cardiovascular risk factors were extracted for each patient 13 months before referral (JGPN), at UCC inclusion, and during 12 months follow-up (JGPN). The following areas were assessed: registration of risk factors; detection of risk factor(s) requiring treatment at UCC; communication of risk factors and actionable suggestions from the specialist to the GP; and change of management during follow-up. Results: In 52% of patients, >1 risk factors were registered (that is, extractable from structured fields within routine care health records) before UCC. In 12%—72% of patients, risk factor(s) existed that required (change or start of) treatment at UCC inclusion. Specialist communication included the complete risk profile in 67% of letters, but lacked actionable suggestions in 86%. In 29% of patients, at least one risk factor was registered after UCC. Change in management in GP records was seen in 21%-58% of them. Conclusion: Evaluation of a multidisciplinary LHS is possible via linkage of health data sources. Efforts have to be made to improve registration in primary care, as well as communication on findings and actionable suggestions for follow-up to bridge the gap in the CVRM continuum

    Automatic Prediction of Recurrence of Major Cardiovascular Events: A Text Mining Study Using Chest X-Ray Reports

    Get PDF
    Background and Objective. Electronic health records (EHRs) contain free-text information on symptoms, diagnosis, treatment, and prognosis of diseases. However, this potential goldmine of health information cannot be easily accessed and used unless proper text mining techniques are applied. The aim of this project was to develop and evaluate a text mining pipeline in a multimodal learning architecture to demonstrate the value of medical text classification in chest radiograph reports for cardiovascular risk prediction. We sought to assess the integration of various text representation approaches and clinical structured data with state-of-the-art deep learning methods in the process of medical text mining. Methods. We used EHR data of patients included in the Second Manifestations of ARTerial disease (SMART) study. We propose a deep learning-based multimodal architecture for our text mining pipeline that integrates neural text representation with preprocessed clinical predictors for the prediction of recurrence of major cardiovascular events in cardiovascular patients. Text preprocessing, including cleaning and stemming, was first applied to filter out the unwanted texts from X-ray radiology reports. Thereafter, text representation methods were used to numerically represent unstructured radiology reports with vectors. Subsequently, these text representation methods were added to prediction models to assess their clinical relevance. In this step, we applied logistic regression, support vector machine (SVM), multilayer perceptron neural network, convolutional neural network, long short-term memory (LSTM), and bidirectional LSTM deep neural network (BiLSTM). Results. We performed various experiments to evaluate the added value of the text in the prediction of major cardiovascular events. The two main scenarios were the integration of radiology reports (1) with classical clinical predictors and (2) with only age and sex in the case of unavailable clinical predictors. In total, data of 5603 patients were used with 5-fold cross-validation to train the models. In the first scenario, the multimodal BiLSTM (MI-BiLSTM) model achieved an area under the curve (AUC) of 84.7%, misclassification rate of 14.3%, and F1 score of 83.8%. In this scenario, the SVM model, trained on clinical variables and bag-of-words representation, achieved the lowest misclassification rate of 12.2%. In the case of unavailable clinical predictors, the MI-BiLSTM model trained on radiology reports and demographic (age and sex) variables reached an AUC, F1 score, and misclassification rate of 74.5%, 70.8%, and 20.4%, respectively. Conclusions. Using the case study of routine care chest X-ray radiology reports, we demonstrated the clinical relevance of integrating text features and classical predictors in our text mining pipeline for cardiovascular risk prediction. The MI-BiLSTM model with word embedding representation appeared to have a desirable performance when trained on text data integrated with the clinical variables from the SMART study. Our results mined from chest X-ray reports showed that models using text data in addition to laboratory values outperform those using only known clinical predictors

    The effect of computerized decision support systems on cardiovascular risk factors: A systematic review and meta-analysis

    Get PDF
    Background: Cardiovascular risk management (CVRM) is notoriously difficult because of multi-morbidity and the different phenotypes and severities of cardiovascular disease. Computerized decision support systems (CDSS) enable the clinician to integrate the latest scientific evidence and patient information into tailored strategies. The effect on cardiovascular risk factor management is yet to be confirmed. Methods: We performed a systematic review and meta-analysis evaluating the effects of CDSS on CVRM, defined as the change in absolute values and attainment of treatment goals of systolic blood pressure (SBP), low density lipoprotein cholesterol (LDL-c) and HbA1c. Also, CDSS characteristics related to more effective CVRM were identified. Eligible articles were methodologically appraised using the Cochrane risk of bias tool. We calculated mean differences, relative risks, and if appropriate (I2 < 70%), pooled the results using a random-effects model. Results: Of the 14,335 studies identified, 22 were included. Four studies reported on SBP, 3 on LDL-c, 10 on CVRM in patients with type II diabetes and 5 on guideline adherence. The CDSSs varied considerably in technical performance and content. Heterogeneity of results was such that quantitative pooling was often not appropriate. Among CVRM patients, the results tended towards a beneficial effect of CDSS, but only LDL-c target attainment in diabetes patients reached statistical significance. Prompting, integration into the electronical health record, patient empowerment, and medication support were related to more effective CVRM. Conclusion: We did not find a clear clinical benefit from CDSS in cardiovascular risk factor levels and target attainment. Some features of CDSS seem more promising than others. However, the variability in CDSS characteristics and heterogeneity of the results – emphasizing the immaturity of this research area - limit stronger conclusions. Clinical relevance of CDSS in CVRM might additionally be sought in the improvement of shared decision making and patient empowerment

    Low-Density Lipoprotein Cholesterol Target Attainment in Patients With Established Cardiovascular Disease: Analysis of Routine Care Data

    Get PDF
    BACKGROUND: Direct feedback on quality of care is one of the key features of a learning health care system (LHS), enabling health care professionals to improve upon the routine clinical care of their patients during practice. OBJECTIVE: This study aimed to evaluate the potential of routine care data extracted from electronic health records (EHRs) in order to obtain reliable information on low-density lipoprotein cholesterol (LDL-c) management in cardiovascular disease (CVD) patients referred to a tertiary care center. METHODS: We extracted all LDL-c measurements from the EHRs of patients with a history of CVD referred to the University Medical Center Utrecht. We assessed LDL-c target attainment at the time of referral and per year. In patients with multiple measurements, we analyzed LDL-c trajectories, truncated at 6 follow-up measurements. Lastly, we performed a logistic regression analysis to investigate factors associated with improvement of LDL-c at the next measurement. RESULTS: Between February 2003 and December 2017, 250,749 LDL-c measurements were taken from 95,795 patients, of whom 23,932 had a history of CVD. At the time of referral, 51% of patients had not reached their LDL-c target. A large proportion of patients (55%) had no follow-up LDL-c measurements. Most of the patients with repeated measurements showed no change in LDL-c levels over time: the transition probability to remain in the same category was up to 0.84. Sequence clustering analysis showed more women (odds ratio 1.18, 95% CI 1.07-1.10) in the cluster with both most measurements off target and the most LDL-c measurements furthest from the target. Timing of drug prescription was difficult to determine from our data, limiting the interpretation of results regarding medication management. CONCLUSIONS: Routine care data can be used to provide feedback on quality of care, such as LDL-c target attainment. These routine care data show high off-target prevalence and little change in LDL-c over time. Registrations of diagnosis; follow-up trajectory, including primary and secondary care; and medication use need to be improved in order to enhance usability of the EHR system for adequate feedback

    Data mining information from electronic health records produced high yield and accuracy for current smoking status

    Get PDF
    OBJECTIVES: Researchers are increasingly using routine clinical data for care evaluations and feedback to patients and clinicians. The quality of these evaluations depends on the quality and completeness of the input data. STUDY DESIGN AND SETTING: We assessed the performance of an electronic health record (EHR)-based data mining algorithm, using the example of the smoking status in a cardiovascular population. As a reference standard, we used the questionnaire from the Utrecht Cardiovascular Cohort (UCC). To assess diagnostic accuracy, we calculated sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). RESULTS: We analyzed 1,661 patients included in the UCC to January 18, 2019. Of those, 14% (n = 238) had missing information on smoking status in the UCC questionnaire. Data mining provided information on smoking status in 99% of the 1,661 participants. Diagnostic accuracy for current smoking was sensitivity 88%, specificity 92%, NPV 98%, and PPV 63%. From false positives, 85% reported they had quit smoking at the time of the UCC. CONCLUSION: Data mining showed great potential in retrieving information on smoking (a near complete yield). Its diagnostic performance is good for negative smoking statuses. The implications of misclassification with data mining are dependent on the application of the data

    Text-mining in electronic healthcare records can be used as efficient tool for screening and data collection in cardiovascular trials: a multicenter validation study

    Get PDF
    Objective: This study aimed to validate trial patient eligibility screening and baseline data collection using text-mining in electronic healthcare records (EHRs), comparing the results to those of an international trial. Study Design and Setting: In three medical centers with different EHR vendors, EHR-based text-mining was used to automatically screen patients for trial eligibility and extract baseline data on nineteen characteristics. First, the yield of screening with automated EHR text-mining search was compared with manual screening by research personnel. Second, the accuracy of extracted baseline data by EHR text mining was compared to manual data entry by research personnel. Results: Of the 92,466 patients visiting the out-patient cardiology departments, 568 (0.6%) were enrolled in the trial during its recruitment period using manual screening methods. Automated EHR data screening of all patients showed that the number of patients needed to screen could be reduced by 73,863 (79.9%). The remaining 18,603 (20.1%) contained 458 of the actual participants (82.4% of participants). In trial participants, automated EHR text-mining missed a median of 2.8% (Interquartile range [IQR] across all variables 0.4e8.5%) of all data points compared to manually collected data. The overall accuracy of automatically extracted data was 88.0% (IQR 84.7e92.8%). Conclusion: Automatically extracting data from EHRs using text-mining can be used to identify trial participants and to collect baseline informatio

    A computerised decision support system for cardiovascular risk management ‘live’ in the electronic health record environment: development, validation and implementation—the Utrecht Cardiovascular Cohort Initiative

    Get PDF
    PURPOSE: We set out to develop a real-time computerised decision support system (CDSS) embedded in the electronic health record (EHR) with information on risk factors, estimated risk, and guideline-based advice on treatment strategy in order to improve adherence to cardiovascular risk management (CVRM) guidelines with the ultimate aim of improving patient healthcare. METHODS: We defined a project plan including the scope and requirements, infrastructure and interface, data quality and study population, validation and evaluation of the CDSS. RESULTS: In collaboration with clinicians, data scientists, epidemiologists, ICT architects, and user experience and interface designers we developed a CDSS that provides ‘live’ information on CVRM within the environment of the EHR. The CDSS provides information on cardiovascular risk factors (age, sex, medical and family history, smoking, blood pressure, lipids, kidney function, and glucose intolerance measurements), estimated 10-year cardiovascular risk, guideline-compliant suggestions for both pharmacological and non-pharmacological treatment to optimise risk factors, and an estimate on the change in 10-year risk of cardiovascular disease if treatment goals are adhered to. Our pilot study identified a number of issues that needed to be addressed, such as missing data, rules and regulations, privacy, and patient participation. CONCLUSION: Development of a CDSS is complex and requires a multidisciplinary approach. We identified opportunities and challenges in our project developing a CDSS aimed at improving adherence to CVRM guidelines. The regulatory environment, including guidance on scientific evaluation, legislation, and privacy issues needs to evolve within this emerging field of eHealth

    Screening after hypertensive pregnancy disorders: She can do best

    No full text
    corecore