409 research outputs found

    Noncommutative deformation of four dimensional Einstein gravity

    Get PDF
    We construct a model for noncommutative gravity in four dimensions, which reduces to the Einstein-Hilbert action in the commutative limit. Our proposal is based on a gauge formulation of gravity with constraints. While the action is metric independent, the constraints insure that it is not topological. We find that the choice of the gauge group and of the constraints are crucial to recover a correct deformation of standard gravity. Using the Seiberg-Witten map the whole theory is described in terms of the vierbeins and of the Lorentz transformations of its commutative counterpart. We solve explicitly the constraints and exhibit the first order noncommutative corrections to the Einstein-Hilbert action.Comment: LaTex, 11 pages, comments added, to appear in Classical and Quantum Gravit

    Cosmological perturbations and short distance physics from Noncommutative Geometry

    Get PDF
    We investigate the possible effects on the evolution of perturbations in the inflationary epoch due to short distance physics. We introduce a suitable non local action for the inflaton field, suggested by Noncommutative Geometry, and obtained by adopting a generalized star product on a Friedmann-Robertson-Walker background. In particular, we study how the presence of a length scale where spacetime becomes noncommutative affects the gaussianity and isotropy properties of fluctuations, and the corresponding effects on the Cosmic Microwave Background spectrum.Comment: Published version, 16 page

    Perturbation theory of the space-time non-commutative real scalar field theories

    Full text link
    The perturbative framework of the space-time non-commutative real scalar field theory is formulated, based on the unitary S-matrix. Unitarity of the S-matrix is explicitly checked order by order using the Heisenberg picture of Lagrangian formalism of the second quantized operators, with the emphasis of the so-called minimal realization of the time-ordering step function and of the importance of the \star-time ordering. The Feynman rule is established and is presented using ϕ4\phi^4 scalar field theory. It is shown that the divergence structure of space-time non-commutative theory is the same as the one of space-space non-commutative theory, while there is no UV-IR mixing problem in this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference

    Quantum Mechanics as an Approximation to Classical Mechanics in Hilbert Space

    Full text link
    Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket, and a quasidensity operator. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Classical mechanics can now be viewed as a deformation of quantum mechanics. The forms of semiquantum approximations to classical mechanics are indicated.Comment: 10 pages, Latex2e file, references added, minor clarifications mad

    Group Theory and Quasiprobability Integrals of Wigner Functions

    Full text link
    The integral of the Wigner function of a quantum mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0,1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric disks and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in Hilbert space carrying the positive discrete series representations of the algebra su(1,1)or so(2,1). The explicit relation between the spectra of operators associated with disks and circles with proportional radii, is given in terms of the dicrete variable Meixner polynomials.Comment: 11 pages, latex fil

    The Fuzzy Sphere: From The Uncertainty Relation To The Stereographic Projection

    Full text link
    On the fuzzy sphere, no state saturates simultaneously all the Heisenberg uncertainties. We propose a weaker uncertainty for which this holds. The family of states so obtained is physically motivated because it encodes information about positions in this fuzzy context. In particular, these states realize in a natural way a deformation of the stereographic projection. Surprisingly, in the large jj limit, they reproduce some properties of the ordinary coherent states on the non commutative plane.Comment: 18 pages, Latex. Minor changes in notations. Version to appear in JHE

    Noncommutative gravity coupled to fermions: second order expansion via Seiberg-Witten map

    Full text link
    We use the Seiberg-Witten map (SW map) to expand noncommutative gravity coupled to fermions in terms of ordinary commuting fields. The action is invariant under general coordinate transformations and local Lorentz rotations, and has the same degrees of freedom as the commutative gravity action. The expansion is given up to second order in the noncommutativity parameter {\theta}. A geometric reformulation and generalization of the SW map is presented that applies to any abelian twist. Compatibility of the map with hermiticity and charge conjugation conditions is proven. The action is shown to be real and invariant under charge conjugation at all orders in {\theta}. This implies the bosonic part of the action to be even in {\theta}, while the fermionic part is even in {\theta} for Majorana fermions.Comment: 27 pages, LaTeX. Revised version with proof of charge conjugation symmetry of the NC action and its parity under theta --> - theta (see new sect. 2.6, sect. 6 and app. B). References added. arXiv admin note: substantial text overlap with arXiv:0902.381

    A finite model of two-dimensional ideal hydrodynamics

    Full text link
    A finite-dimensional su(NN) Lie algebra equation is discussed that in the infinite NN limit (giving the area preserving diffeomorphism group) tends to the two-dimensional, inviscid vorticity equation on the torus. The equation is numerically integrated, for various values of NN, and the time evolution of an (interpolated) stream function is compared with that obtained from a simple mode truncation of the continuum equation. The time averaged vorticity moments and correlation functions are compared with canonical ensemble averages.Comment: (25 p., 7 figures, not included. MUTP/92/1

    Husimi Transform of an Operator Product

    Get PDF
    It is shown that the series derived by Mizrahi, giving the Husimi transform (or covariant symbol) of an operator product, is absolutely convergent for a large class of operators. In particular, the generalized Liouville equation, describing the time evolution of the Husimi function, is absolutely convergent for a large class of Hamiltonians. By contrast, the series derived by Groenewold, giving the Weyl transform of an operator product, is often only asymptotic, or even undefined. The result is used to derive an alternative way of expressing expectation values in terms of the Husimi function. The advantage of this formula is that it applies in many of the cases where the anti-Husimi transform (or contravariant symbol) is so highly singular that it fails to exist as a tempered distribution.Comment: AMS-Latex, 13 page
    corecore