3 research outputs found

    Reduced Reproductive Success of Western Baltic Herring (Clupea harengus) as a Response to Warming Winters

    Get PDF
    Shallow estuaries, bays, and lagoons are generally considered hot spots of ocean productivity that often adjust rapidly to seasonal variations in atmospheric temperatures. During spring when biological reproductive processes begin in the temperate zones, regional climate variability can be immense and uncovering a non-linear biological response, such as fish recruitment to changing temperature regimes might be challenging. Using herring as a paradigm for a response of coastal spring productivity to regional climate drivers, we demonstrated how the annual timing of spawning periods can significantly affect the reproductive success of spring-spawning herring (Clupea harengus) in the western Baltic Sea. An investigation of spawning phenology in consecutive years indicated a temperature threshold range of 3.5–4.5°C triggering initial spawning in the coastal zone. Based on this finding, we analyzed the timing of larval hatching peaks, larval survival and recruitment to the adult population relative to multi-decadal time-series of seasonal sea-surface temperatures. The results revealed that the late seasonal onset of cold periods the corresponding elongation of the period where larvae hatch from the eggs and early larval hatching peaks significantly reduced larval production in a coastal nursery area and finally lead to a reduced abundance of juveniles in the entire distribution area. Using a combination of field research and time series analysis, we presented precedence for shifting regional winter regimes providing a present-day stressor to reproductive capacity of a central component of the coastal food web

    Mixed-stock analysis of Atlantic herring (Clupea harengus): a tool for identifying management units and complex migration dynamics

    Get PDF
    We developed and validated a mixed-stock analysis (MSA) method with 59 single-nucleotide polymorphisms selected from genome-wide data to assign individuals to populations in mixed-stock samples of Atlantic herring from the North and Baltic seas. We analysed 3734 herring from spawning locations and scientific catches of mixed feeding stocks to demonstrate a "one-fits-all" tool with unprecedented accuracy for monitoring spatio-temporal dynamics throughout a large geographical range with complex stock mixing. We re-analysed time-series data (2002-2021) and compared inferences about stock composition with estimates from morphological data. We show that contributions from the western Baltic spring-spawning stock complex, which is under management concern, have likely been overestimated. We also show that a genetically distinctive population of western Baltic autumn spawners, ascribed low fisheries importance, contributes non-negligible and potentially temporally increasing proportions to mixed-stock aggregations, calling for a re-evaluation of stock definitions. MSA data can be implemented in stock assessment and in a variety of applications, including marine ecosystem description, impact assessment of specific fleets, and stock-rebuilding plans

    Caught in the middle: bottom-up and top-down processes impacting recruitment in a small pelagic fish

    Get PDF
    Understanding the drivers behind fluctuations in fish populations remains a key objective in fishery science. Our predictive capacity to explain these fluctuations is still relatively low, due to the amalgam of interacting bottom-up and top-down factors, which vary across time and space among and within populations. Gaining a mechanistic understanding of these recruitment drivers requires a holistic approach, combining field, experimental and modelling efforts. Here, we use the Western Baltic Spring-Spawning (WBSS) herring (Clupea harengus) to exemplify the power of this holistic approach and the high complexity of the recruitment drivers (and their interactions). Since the early 2000s, low recruitment levels have promoted intense research on this stock. Our literature synthesis suggests that the major drivers are habitat compression of the spawning beds (due to eutrophication and coastal modification mainly) and warming, which indirectly leads to changes in spawning phenology, prey abundance and predation pressure. Other factors include increased intensity of extreme climate events and new predators in the system. Four main knowledge gaps were identified related to life-cycle migration and habitat use, population structure and demographics, life-stage specific impact of multi-stressors, and predator-prey interactions. Specific research topics within these areas are proposed, as well as the priority to support a sustainable management of the stock. Given that the Baltic Sea is severely impacted by warming, eutrophication and altered precipitation, WBSS herring could be a harbinger of potential effects of changing environmental drivers to the recruitment of small pelagic fishes in other coastal areas in the world
    corecore