432 research outputs found
Solution of ordinary differential equations by means of Lie series
Solution of ordinary differential equations by Lie series - Laplace transformation, Weber parabolic-cylinder functions, Helmholtz equations, and applications in physic
Lie series for celestial mechanics, accelerators, satellite stabilization and optimization
Lie series applications to celestial mechanics, accelerators, satellite orbits, and optimizatio
Recommended from our members
Study of the conditions for spontaneous H-mode transitions in DIII-D
A series of scaling studies attempting to correlate the H(high)-mode power threshold (P{sub TH}) with global parameters have been conducted. Data from these discharges is also being used to look for dependence of P{sub TH} on local edge parameters and to test theories of the transition. Boronization and better operational techniques have resulted in lower power thresholds and weaker density scaling. Neon impurity injection experiments show that radiation also plays a role in determining P{sub TH}. A low density threshold for the L(low)-H(high) transition has been linked with the locked mode low density limit, and can be reduced with the use of an error field correcting coil. Highly developed edge diagnostics, with spatial resolution as low as 5 mm, are used to evaluate how the power threshold depends on local edge conditions. Preliminary analysis of local edge conditions for parameter scans of n{sub e}, B{sub T}, and I{sub p} in single-null discharges, and the X-point imbalance in double-null discharges-show that, just before the transition to H-mode, the edge temperatures near the separatrix are approximately constant at 100 < T{sub i} < 220 eV and 35 < T{sub e} < 130 eV, even though the threshold power varied from 1.5 to 14 MW. During a density scan, the edge ion collisionality, v{sub *i}, varied from 2 to 17, demonstrating that a transition condition as simple as v{sub *i} = constant is inconsistent with the data. The local edge parameters of n{sub e}, T{sub e}, and T{sub i} do not always follow the same global scaling as P{sub TH}. Therefore, theories of the L-H transition need not be constrained by these scalings
Experimentally inferred thermal diffusivities in the edge pedestal between edge-localized modes in DIII-D
© 2007 American Institute of Physics. The electronic version of this article is the complete one and can be found online at:http://link.aip.org/link/PHPAEN/v14/i12/p122504/s1DOI: 10.1063/1.2817969Using temperature and density profiles averaged over the same subinterval of several successive inter-edge-localized-mode (ELM) periods, the ion and electron thermal diffusivities in the edge pedestal were inferred between ELMs for two DIII-D [ J. Luxon, Nucl. Fusion 42, 614 (2002) ] discharges. The inference procedure took into account the effects of plasma reheating and density buildup between ELMs, radiation and atomic physics cooling, neutral beam heating and ion-electron equilibration, and recycling neutral and beam ionization particle sources in determining the conductive heat flux profiles used to infer the thermal diffusivities in the edge pedestal. Comparison of the inferred thermal diffusivities with theoretical formulas based on various transport mechanisms was inconclusive insofar as identifying likely transport mechanisms
The European COST Action EUBrewNet: towards consistency in quality control, quality assurance and coordinated operations of the Brewer Instrument
Presentación realizada en: 10th meeting of the Ozone Research Managers (ORM) como parte de "Vienna Convention for the Protection of the Ozone Layer", celebrado en Ginebra (Suiza) del 28 al 30 de marzo de 2017
Recommended from our members
Study of H-Mode Threshold Conditions in DIII-D
Studies have been conducted in DIII-D to determine the dependence of the power threshold P{sub lh} for the transition to the H-mode regime and the threshold P{sub hl} for the transition from H-mode to L-mode as functions of external parameters. There is a value of the line-averaged density n{sub e} at which P{sub lh} has a minimum and P{sub lh} tends to increase for lower and higher values of n{sub e}. Experiments conducted to separate the effect of the neutral density n{sub 0} from the plasma density n{sub e} give evidence of a strong coupling between n{sub 0} and n{sub e}. The separate effect of neutrals on the transition has not been determined. Coordinated experiments with JET made in the ITER shape show that P{sub lh} increases approximately as S{sup 0.5} where S is the plasma surface area. For these discharges, the power threshold in DIII-D was high by normal standards, thus suggesting that effects other than plasma size may have affected the experiment. Studies of H-L transitions have been initiated and hysteresis of order 40% has been observed. Studies have also been done of the dependence of the L-H transition on local edge parameters. Characterization of the edge within a few ms prior to the transition shows that the range of edge temperatures at which the transition has been observed is more restrictive than the range of densities at which it occurs. These results suggest that some temperature function is important for controlling the transition
Recommended from our members
Comparison of Sawtooth Phenomenology on TFTR and DIII-D
An experiment to study sawtooth phenomena and to find the threshold for sawtooth stabilization with neutral beam injection heating, as was commonly observed on TFTR, has been done on DIII-D. In the experiments, with co-tangential neutral beam injection at powers of up to 13MW, the sawtooth period was observed to increase to of order 250 msec. Stabilization of the sawteeth for the length of the high power NBI (0.5-0.8 sec) was not observed. The sawtooth characteristics were studied with fast electron temperature (ECE) and soft x-ray diagnostics. Fast, 2 msec interval, measurements were made of the ion temperature evolution following the sawtooth to document the ion heat pulse characteristics. These data show that the ion heat pulse does not exhibit the very fast, ''ballistic'' behavior seen for the electrons. The current profile and other equilibrium profiles were measured on slower time scales. These results are compared to the data from similar studies carried out on TFTR
- …