40 research outputs found

    Dual-Energy Computed Tomography in Stroke Imaging : Value of a New Image Acquisition Technique for Ischemia Detection after Mechanical Thrombectomy

    Full text link
    OBJECTIVE: To assess if a new dual-energy computed tomography (DECT) technique enables an improved visualization of ischemic brain tissue after mechanical thrombectomy in acute stroke patients. MATERIAL AND METHODS: The DECT head scans with a new sequential technique (TwinSpiral DECT) were performed in 41 patients with ischemic stroke after endovascular thrombectomy and were retrospectively included. Standard mixed and virtual non-contrast (VNC) images were reconstructed. Infarct visibility and image noise were assessed qualitatively by two readers using a 4-point Likert scale. Quantitative Hounsfield units (HU) were used to assess density differences of ischemic brain tissue versus healthy tissue on the non-affected contralateral hemisphere. RESULTS: Infarct visibility was significantly better in VNC compared to mixed images for both readers R1 (VNC: median 1 (range 1-3), mixed: median 2 (range 1-4), p < 0.05) and R2 (VNC: median 2 (range 1-3), mixed: 2 (range 1-4), p < 0.05). Qualitative image noise was significantly higher in VNC compared to mixed images for both readers R1 (VNC: median 3, mixed: 2) and R2 (VNC: median 2, mixed: 1, p < 0.05, each). Mean HU were significantly different between the infarcted tissue and the reference healthy brain tissue on the contralateral hemisphere in VNC (infarct 24 ± 3) and mixed images (infarct 33 ± 5, p < 0.05, each). The mean HU difference between ischemia and reference in VNC images (mean 8 ± 3) was significantly higher (p < 0.05) compared to the mean HU difference in mixed images (mean 5 ± 4). CONCLUSION: TwinSpiral DECT allows an improved qualitative and quantitative visualization of ischemic brain tissue in ischemic stroke patients after endovascular treatment

    A Novel Dual-Energy CT Method for Detection and Differentiation of Intracerebral Hemorrhage From Contrast Extravasation in Stroke Patients After Endovascular Thrombectomy : Feasibility and First Results.

    Get PDF
    PURPOSE Dual-energy computed tomography (DECT) has been shown to be able to differentiate between intracranial hemorrhage (ICH) and extravasation of iodinated contrast media (contrast staining [CS]). TwinSpiral DECT is a recently introduced technique, which allows image acquisition at two different energy levels in two consecutive spiral scans. The aim of this study was to evaluate the feasibility and accuracy of TwinSpiral DECT to distinguish between ICH and CS after endovascular thrombectomy (EVT) in patients with acute ischemic stroke. METHODS This retrospective single-center study conducted between November 2019 and July 2020 included non-contrast TwinSpiral DECT scans (tube voltages 80 and 150Sn kVp) of 39 ischemic stroke patients (18 females, 21 males, mean age 69 ± 11 years) within 48-72 h after endovascular thrombectomy. Parenchymal hyperdensity was assessed for the presence of ICH or/and CS by two board certified and fellowship-trained, blinded and independent neuroradiologists using standard mixed images and virtual non-contrast (VNC) images with corresponding iodine maps from TwinSpiral DECT. Follow-up examinations (FU; CT or MRI) were used as a standard of reference. Sensitivity, specificity, and accuracy for the detection of ICH as well as the inter-reader agreement were calculated. RESULTS Parenchymal hyperdensities were detected in 17/39 (44%) patients. Using DECT, they were classified by both readers as ICH in 9 (53%), CS in 8 (47%), and mixture of both in 6 (35%) cases with excellent agreement (κ = 0.81, P < 0.0001). The sensitivity, specificity, and accuracy for the detection of ICH in DECT was 90% (95% confidence interval [CI]: 84-96%), 100% (95% CI 94-100%) and 95% (95% CI 89-100%), and in mixed images 90% (95% CI 84-96%), 86% (95% CI 80-92%) and 88% (95% CI 82-94%), respectively. Inter-reader agreement for detecting ICH on DECT compared to the mixed images was κ = 1.00 (P < 0.0001) vs. κ = 0.51 (P = 0.034). CONCLUSION TwinSpiral DECT demonstrates high accuracy and excellent specificity for differentiating ICH from CS in patients after mechanical thrombectomy due to acute ischemic stroke, and improves inter-reader agreement for detecting ICH compared to the standard mixed images

    A Novel Dual-Energy CT Method for Detection and Differentiation of Intracerebral Hemorrhage From Contrast Extravasation in Stroke Patients After Endovascular Thrombectomy : Feasibility and First Results

    Full text link
    PURPOSE: Dual-energy computed tomography (DECT) has been shown to be able to differentiate between intracranial hemorrhage (ICH) and extravasation of iodinated contrast media (contrast staining [CS]). TwinSpiral DECT is a recently introduced technique, which allows image acquisition at two different energy levels in two consecutive spiral scans. The aim of this study was to evaluate the feasibility and accuracy of TwinSpiral DECT to distinguish between ICH and CS after endovascular thrombectomy (EVT) in patients with acute ischemic stroke. METHODS: This retrospective single-center study conducted between November 2019 and July 2020 included non-contrast TwinSpiral DECT scans (tube voltages 80 and 150Sn kVp) of 39 ischemic stroke patients (18 females, 21 males, mean age 69 ± 11 years) within 48-72 h after endovascular thrombectomy. Parenchymal hyperdensity was assessed for the presence of ICH or/and CS by two board certified and fellowship-trained, blinded and independent neuroradiologists using standard mixed images and virtual non-contrast (VNC) images with corresponding iodine maps from TwinSpiral DECT. Follow-up examinations (FU; CT or MRI) were used as a standard of reference. Sensitivity, specificity, and accuracy for the detection of ICH as well as the inter-reader agreement were calculated. RESULTS: Parenchymal hyperdensities were detected in 17/39 (44%) patients. Using DECT, they were classified by both readers as ICH in 9 (53%), CS in 8 (47%), and mixture of both in 6 (35%) cases with excellent agreement (κ = 0.81, P < 0.0001). The sensitivity, specificity, and accuracy for the detection of ICH in DECT was 90% (95% confidence interval [CI]: 84-96%), 100% (95% CI 94-100%) and 95% (95% CI 89-100%), and in mixed images 90% (95% CI 84-96%), 86% (95% CI 80-92%) and 88% (95% CI 82-94%), respectively. Inter-reader agreement for detecting ICH on DECT compared to the mixed images was κ = 1.00 (P < 0.0001) vs. κ = 0.51 (P = 0.034). CONCLUSION: TwinSpiral DECT demonstrates high accuracy and excellent specificity for differentiating ICH from CS in patients after mechanical thrombectomy due to acute ischemic stroke, and improves inter-reader agreement for detecting ICH compared to the standard mixed images

    Experimental evaluation of the resolution improvement provided by a silicon PET probe

    Get PDF
    A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 x 16 arrays of 1.4mm x 1.4mm pixels and the other in 40 x 26 arrays of 1.0mm x 1.0mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 x 6 arrays of 6mm x 12mm x 30mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8mm and 4.0mm phantom features respectively, were observed, while previously unresolvable 3.2mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe

    18

    No full text

    Foundations of Lesion Detection Using Machine Learning in Clinical Neuroimaging

    Full text link
    This chapter describes technical considerations and current and future clinical applications of lesion detection using machine learning in the clinical setting. Lesion detection is central to neuroradiology and precedes all further processes which include but are not limited to lesion characterization, quantification, longitudinal disease assessment, prognosis, and prediction of treatment response. A number of machine learning algorithms focusing on lesion detection have been developed or are currently under development which may either support or extend the imaging process. Examples include machine learning applications in stroke, aneurysms, multiple sclerosis, neuro-oncology, neurodegeneration, and epilepsy

    OPCAB procedure in patient over 75 years-old- experience in the Department of Cardiac Surgery in `Sveta Marina` University Hospital, Varna, Bulgaria

    No full text
    Being on the mainstream surgery techniques OPCAB continues to be hotly debated. Performing off-pump coronary bypass grafting has a number of purported advantages over conventional CABG. The main advantages claimed for OPCAB include: reduction in risk of death, stroke, myocardial infarction, arrhythmias, renal insufficiency, and neurocognitive disfunction.Age has been recognized as an independent predictor of mortality in patients undergoing CABG.With increasing patient`s age, a number of comorbidities also increasingly manifests in elderly patient`s population (diabetes, renal insufficiency, pulmonary disease, cerebrovascular disease, atheromatous aorta), each of witch may also be independently associated with mortality in CABG.Other benefits reported to be implicated with off-pump coronary artery grafting is reducton in resource utilization (intensive care unit stay, postoperative hospital stay) in high-risk patinets. We report our experience in OPCAB surgery in patients older than 75 years, comparing the early results with a cohort of patients performed with the conventional CABG technique. We reviwed 107 patients between 2011 and 2013. The patients were divided in to two groups. Forty-five patients menaged with OPCAB technique and 62 patients managed with the conventional CABG technique. There were no in hospital deaths in the OPCAB group and five deaths in the CABG group. Key words: OPCAB, CABG, age, mortalit

    18F-fluoromisonidazole predicts evofosfamide uptake in pancreatic tumor model

    No full text
    Abstract Background Quantitative imaging can facilitate patient stratification in clinical trials. The hypoxia-activated prodrug evofosfamide recently failed a phase III trial in pancreatic cancer. However, the study did not attempt to select for patients with hypoxic tumors. We tested the ability of 18F-fluoromisonidazole to predict evofosfamide uptake in an orthotopic xenograft model (BxPC3). Methods Two forms of evofosfamide were used: (1) labeled on the active moiety (3H) and (2) on the hypoxia targeting nitroimidazole group (14C). Tumor uptake of evofosfamide and 18F-fluoromisonidazole was counted ex vivo. Autoradiography of 14C and 18F coupled with pimonidazole immunohistochemistry revealed the spatial distributions of prodrug, radiotracer, and hypoxia. Results There was significant individual variation in 18F-fluoromisonidazole uptake, and a significant correlation between normalized 18F-fluoromisonidazole and both 3H-labeled and 14C-labeled evofosfamide. 18F-fluoromisonidazole and 14C-evofosfamide both localized in hypoxic regions as identified by pimonidazole. Conclusion 18F-fluoromisonidazole predicts evofosfamide uptake in a preclinical pancreatic tumor model
    corecore