366 research outputs found
Subsolidus phase equilibria of the CuO â SrO â ZnO pseudoternary system in air at 900 °C
Received: 15.11.2017. Accepted: 01.12.2017. Published: 10.05.2018.The subsolidus phase equilibria of the CuO â SrO â ZnO system were determined at 900 °C in air. The pseudoternary section does not contain ternary oxide phases but is made of 5 three-phase regions and 2 narrow two-phase regions linked to a Sr14Cu24âxZnxO41ây solid solution. The maximum solubility of Zn in this phase is limited to x â 0.1, but this low doping level results in a significant decrease of the electrical resistivity by about one order of magnitude compared to the undoped compound. The other binary oxide phases SrZnO2, Sr2CuO3, and SrCuO2 do not form solid solutions extending into the ternary system. SrZnO2 was found to decompose upon contact with ambient air
Selective transmission of R5 HIV-1 variants: where is the gatekeeper?
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a âgatekeeperâ that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepersâ localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants
Distinct nature of static and dynamic magnetic stripes in cuprate superconductors
We present detailed neutron scattering studies of the static and dynamic
stripes in an optimally doped high-temperature superconductor,
LaCuO. We find that the dynamic stripes do not disperse towards the
static stripes in the limit of vanishing energy transfer. We conclude that the
dynamic stripes observed in neutron scattering experiments are not the
Goldstone modes associated with the broken symmetry of the simultaneously
observed static stripes, but rather that the signals originate from different
domains in the sample. These domains may be related by structural twinning, or
may be entirely different phases, where the static stripes in one phase are
pinned versions of the dynamic stripes in the other. Our results explain
earlier observations of unusual dispersions in underdoped
LaSrCuO () and LaBaCuO ().
Our findings are relevant for all compounds exhibiting magnetic stripes, and
may thus be a vital part in unveiling the nature of high temperature
superconductivity
Reversible melting and equilibrium phase formation of (Bi,Pb)2Sr2Ca2Cu3O10+d
The decomposition and the reformation of the (Bi,Pb)2Sr2Ca2Cu3O10+d
(?Bi,Pb(2223)?) phase have been investigated in-situ by means of
High-Temperature Neutron Diffraction, both in sintered bulk samples and in
Ag-sheathed monofilamentary tapes. Several decomposition experiments were
performed at various temperatures and under various annealing atmospheres,
under flowing gas as well as in sealed tubes, in order to study the appropriate
conditions for Bi,Pb(2223) formation from the melt. The Bi,Pb(2223) phase was
found to melt incongruently into (Ca,Sr)2CuO3, (Sr,Ca)14Cu24O41 and a
Pb,Bi-rich liquid phase. Phase reformation after melting was successfully
obtained both in bulk samples and Ag-sheathed tapes. The possibility of
crystallising the Bi,Pb(2223) phase from the melt was found to be extremely
sensitive to the temperature and strongly dependent on the Pb losses. The study
of the mass losses due to Pb evaporation was complemented by thermogravimetric
analysis which proved that Pb losses are responsible for moving away from
equilibrium and therefore hinder the reformation of the Bi,Pb(2223) phase from
the melt. Thanks to the full pattern profile refinement, a quantitative phase
analysis was carried out as a function of time and temperature and the role of
the secondary phases was investigated. Lattice distortions and/or transitions
were found to occur at high temperature in Bi,Pb(2223), Bi,Pb(2212),
(Ca,Sr)2CuO3 and (Sr,Ca)14Cu24O41, due to cation diffusion and stoichiometry
changes. The results indicate that it is possible to form the Bi,Pb(2223) phase
from a liquid close to equilibrium conditions, like Bi(2212) and Bi(2201), and
open new unexplored perspectives for high-quality Ag-sheathed Bi,Pb(2223) tape
processing.Comment: 45 pages (including references,figures and captions), 13 figures
Submitted to Supercond. Sci. Techno
- âŚ