16 research outputs found

    Skeletal myogenic potential of human and mouse neural stem cells

    No full text
    Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues

    Skeletal myogenic potential of human and mouse neural stem cells

    No full text

    Brain tumour stem cells

    No full text
    The dogma that the genesis of new cells is a negligible event in the adult mammalian brain has long influenced our perception and understanding of the origin and development of CNS tumours. The discovery that new neurons and glia are produced throughout life from neural stem cells provides new possibilities for the candidate cells of origin of CNS neoplasias. The emerging hypothesis is that alterations in the cellular and genetic mechanisms that control adult neurogenesis might contribute to brain tumorigenesis, thereby allowing the identification of new therapeutic strategies

    Towards an advanced cell-based <em>in vitro</em> glioma model system

    No full text
    corecore