10 research outputs found
Origin and evolution of flavivirus 5′UTRs and panhandles: Trans-terminal duplications?
Flavivirus replication is mediated by interactions between complementary ssRNA sequences of the 5′- and 3′-termini that form dsRNA cyclisation stems or panhandles, varying in length, sequence and specific location in the mosquito-borne, tick-borne, non-vectored and non-classified flaviviruses. In this manuscript we manually aligned the flavivirus 5′UTRs and adjacent capsid genes and revealed significantly more homology than has hitherto been identified. Analysis of the alignments revealed that the panhandles represent evolutionary remnants of a long cyclisation domain that probably emerged through duplication of one of the UTR termini
Recommended from our members
Origin and evolution of a myxozoan worm
Buddenbrockia pluinatellae is an active, muscular, worm-shaped parasite of freshwater bryozoans. This rare and enigmatic animal has been assigned to the Myxozoa on the basis of 18S ribosomal DNA sequences and the presence of malacosporean spores. Here we report cloning of four homologous protein-coding genes from Buddenbrockia worms, the putatively conspecific sac-shaped parasite originally described as Tetracapsula bryozoides and the related sac-shaped parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish. Analyses are consistent with the hypothesis that Buddenbrockia is indeed a malacosporean myxozoan, but do not provide support for conspecificity with either T. bryozoides or T. bryosalmonae. Implications for the evolution of worm-like body plans in the Myxozoa are discussed