2 research outputs found

    Quantum Quenches in Extended Systems

    Full text link
    We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical phenomena in d+1 dimensions. For d=1 this allows to use the powerful tools of conformal field theory in the case of critical evolution. Several results are obtained in generic dimension in the gaussian (mean-field) approximation. These predictions are checked against the real-time evolution of some solvable models that allows also to understand which features are valid beyond the critical evolution. All our findings may be explained in terms of a picture generally valid, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate with a finite speed through the system. Furthermore we show that the long-time results can be interpreted in terms of a generalized Gibbs ensemble. We discuss some open questions and possible future developments.Comment: 24 Pages, 4 figure

    Crystallization of strongly interacting photons in a nonlinear optical fiber

    Full text link
    Understanding strongly correlated quantum systems is a central problem in many areas of physics. The collective behavior of interacting particles gives rise to diverse fundamental phenomena such as confinement in quantum chromodynamics, phase transitions, and electron fractionalization in the quantum Hall regime. While such systems typically involve massive particles, optical photons can also interact with each other in a nonlinear medium. In practice, however, such interactions are often very weak. Here we describe a novel technique that allows the creation of a strongly correlated quantum gas of photons using one-dimensional optical systems with tight field confinement and coherent photon trapping techniques. The confinement enables the generation of large, tunable optical nonlinearities via the interaction of photons with a nearby cold atomic gas. In its extreme, we show that a quantum light field can undergo fermionization in such one-dimensional media, which can be probed via standard photon correlation measurements
    corecore