3 research outputs found

    The Effect of Hydrogen on Martensite Transformations and the State of Hydrogen Atoms in Binary TiNi-Based Alloy with Different Grain Sizes

    Get PDF
    The analysis presented here shows that in B2-phase of Ti49.1Ni50.9 (at%) alloy, hydrogenation with further aging at room temperature decreases the temperatures of martensite transformations and then causes their suppression, due to hydrogen diffusion from the surface layer of specimens deep into its bulk. When hydrogen is charged, it first suppresses the transformations B2↔B19′ and R↔B19′ in the surface layer, and when its distribution over the volume becomes uniform, such transformations are suppressed throughout the material. The kinetics of hydrogen redistribution is determined by the hydrogen diffusion coefficient DH, which depends on the grain size. In nanocrystalline Ti49.1Ni50.9 (at%) specimens, DH is three times greater than its value in coarse-grained ones, which is likely due to the larger free volume and larger contribution of hydrogen diffusion along grain boundaries in the nanocrystalline material. According to thermal desorption spectroscopy, two states of hydrogen atoms with low and high activation energies of desorption exist in freshly hydrogenated Ti49.1Ni50.9 (at%) alloy irrespective of the grain size. On aging at room temperature, the low-energy states disappear entirely. Estimates by the Kissinger method are presented for the binding energy of hydrogen in the two states, and the nature of these states in binary hydrogenated TiNi-based alloys is discussed

    Structural Defects in TiNi-Based Alloys after Warm ECAP

    Get PDF
    The microstructure, martensitic transformations and crystal structure defects in the Ti50Ni47.3Fe2.7 (at%) alloy after equal-channel angular pressing (ECAP, angle 90°, route BC, 1–3 passes at T = 723 K) have been investigated. A homogeneous submicrocrystalline (SMC) structure (grains/subgrains about 300 nm) is observed after 3 ECAP passes. Crystal structure defects in the Ti49.4Ni50.6 (at%) alloy (8 ECAP passes, angle 120°, BC route, T = 723 K, grains/subgrains about 300 nm) and Ti50Ni47.3Fe2.7 (at%) alloy with SMC B2 structures after ECAP were studied by positron lifetime spectroscopy at the room temperature. The single component with the positron lifetime t1 = 132 ps and t1 = 140 ps were observed for positron lifetime spectra (PLS) obtained from ternary and binary, correspondingly, annealed alloys with coarse-grained structures. This t1 values correspond to the lifetime of delocalized positrons in defect-free B2 phase. The two component PLS were found for all samples exposed by ECAP. The component with t2 = 160 ps (annihilation of positrons trapped by dislocations) is observed for all samples after 1–8 ECAP passes. The component with t3 = 305 ps (annihilation of positrons trapped by vacancy nanoclusters) was detected only after the first ECAP pass. The component with t3 = 200 ps (annihilation of positrons trapped by vacancies in the Ti sublattice of B2 structure) is observed for all samples after 3–8 ECAP passes

    Crystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature

    Get PDF
    The experimental results regarding the effect of warm (573 K) abc pressing with an increase in the specified true strain, e, up to 9.55, on the microstructure and crystal structure defects (dislocations, vacancies) of the Ti49.8Ni50.2 (at %) alloy are presented. It is shown that all samples (regardless of e) have a two-level microstructure. The grains-subgrains of the submicrocrystalline scale level are in the volumes of large grains. The average sizes of both large grains and subgrain grains decrease with increasing e to 9.55 (from 27 to 12 µm and from 0.36 to 0.13 µm, respectively). All samples had a two-phase state (rhombohedral R and monoclinic B19′ martensitic phases) at 295 K. The full-profile analysis of X-ray reflections of the B2 phase obtained at 393 K shows that the dislocation density increases from 1014 m−2 to 1015 m−2 after pressing with e = 1.84 and reaches 2·1015 m−2 when e increases to 9.55. It has been established by positron annihilation lifetime spectroscopy that dislocations are the main type of defects in initial samples and the only type of defects in samples after abc pressing. The lifetime of positrons trapped by dislocations is 166 ps, and the intensity of this component increases from 83% in the initial samples to 99.4% after pressing with e = 9.55. The initial samples contain a component with a positron lifetime of 192 ps (intensity 16.4%), which corresponds to the presence of monovacancies in the nickel sublattice of the B2 phase (concentration ≈10−5). This component is absent in the positron lifetime spectra in the samples after pressing. The results of the analysis of the Doppler broadening spectroscopy correlate with the data obtained by the positron annihilation lifetime spectroscopy
    corecore