14 research outputs found
The NCATS BioPlanet – An Integrated Platform for Exploring the Universe of Cellular Signaling Pathways for Toxicology, Systems Biology, and Chemical Genomics
Chemical genomics aims to comprehensively define, and ultimately predict, the effects of small molecule compounds on biological systems. Chemical activity profiling approaches must consider chemical effects on all pathways operative in mammalian cells. To enable a strategic and maximally efficient chemical profiling of pathway space, we have created the NCATS BioPlanet, a comprehensive integrated pathway resource that incorporates the universe of 1,658 human pathways sourced from publicly available, manually curated sources, which have been subjected to thorough redundancy and consistency cross-evaluation. BioPlanet supports interactive browsing, retrieval, and analysis of pathways, exploration of pathway connections, and pathway search by gene targets, category, and availability of corresponding bioactivity assay, as well as visualization of pathways on a 3-dimensional globe, in which the distance between any two pathways is proportional to their degree of gene component overlap. Using this resource, we propose a strategy to identify a minimal set of 362 biological assays that can interrogate the universe of human pathways. The NCATS BioPlanet is a public resource, which will be continually expanded and updated, for systems biology, toxicology, and chemical genomics, available at http://tripod.nih.gov/bioplanet/
Low-dose salinomycin induces anti-leukemic responses in AML and MLL
Development of anti-cancer drugs towards clinical application is costly and inefficient. Large screens of drugs, efficacious for non-cancer disease, are currently being used to identify candidates for repurposing based on their anti-cancer properties. Here, we show that low-dose salinomycin, a coccidiostat ionophore previously identified in a breast cancer screen, has anti-leukemic efficacy. AML and MLLr cell lines, primary cells and patient samples were sensitive to submicromolar salinomycin. Most strikingly, colony formation of normal hematopoietic cells was unaffected by salinomycin, demonstrating a lack of hemotoxicity at the effective concentrations. Furthermore, salinomycin treatment of primary cells resulted in loss of leukemia repopulation ability following transplantation, as demonstrated by extended recipient survival compared to controls. Bioinformatic analysis of a 17-gene signature identified and validated in primary MLLr cells, uncovered immunomodulatory pathways, hubs and protein interactions as potential transducers of low dose salinomycin treatment. Additionally, increased protein expression of p62/Sqstm1, encoded for by one of the 17 signature genes, demonstrates a role for salinomycin in aggresome/vesicle formation indicative of an autophagic response.Together, the data support the efficacy of salinomycin as an anti-leukemic at non-hemotoxic concentrations. Further investigation alone or in combination with other therapies is warranted for future clinical trial
The Hidden Pandemic of COVID-19-Induced Organizing Pneumonia
Since the beginning of the COVID-19 pandemic, clinical, radiological, and histopathological studies have provided evidence that organizing pneumonia is a possible consequence of the SARS-CoV2 infection. This post-COVID-19 organizing pneumonia (PCOP) causes persisting dyspnea, impaired pulmonary function, and produces radiological abnormalities for at least 5 weeks after onset of symptoms. While most patients with PCOP recover within a year after acute COVID-19, 5–25% of cases need specialized treatment. However, despite substantial resources allocated worldwide to finding a solution to this problem, there are no approved treatments for PCOP. Oral corticosteroids produce a therapeutic response in a majority of such PCOP patients, but their application is limited by the anticipated high-relapse frequency and the risk of severe adverse effects. Herein, we conduct a systematic comparison of the epidemiology, pathogenesis, and clinical presentation of the organizing pneumonias caused by COVID-19 as well as other viral infections. We also use the clinical efficacy of corticosteroids in other postinfection OPs (PIOPs) to predict the therapeutic response in the treatment of PCOP. Finally, we discuss the potential application of a candidate anti-inflammatory and antifibrotic therapy for the treatment of PCOP based on the analysis of the latest clinical trials data
In vivo anticancer activity of rhomboidal Pt(II) metallacycles
Photograph used for a newspaper owned by the Oklahoma Publishing Company. Caption: "(Photo of an airport's control tower cab being lifted to the tower's top, a worker at the top of the tower, two cranes, and more.)