163 research outputs found
Recommended from our members
Electroluminescence excitation mechanisms in an epoxy resin under divergent and uniform field
Electroluminescence excitation mechanisms have been investigated in epoxy resin under divergent and uniform field situations. Metallic wires embedded in the resin were used to produce field divergence whereas film samples were metallised to obtain a uniform field. Electroluminescence under divergent field was stimulated by an impulse voltage. Light was emitted on the positive and negative fronts of the square pulses when the field exceeded 20 kV/mm at the wire surface, with equal intensity and without polarity dependence. There was evidence of space charge accumulation around the wires in multiple-pulse experiments. Charge injection and extraction occurring at both fronts of the pulse provide the condition for EL excitation. Further excitation of the EL during the plateau of the voltage pulse is prevented by the opposite field of the trapped charge. Field computation with and without space charge supports the proposed interpretation. A DC voltage was used for the uniform field experiments. A continuous level of electroluminescence is found at 175 kV/mm. Charging/discharging current measurements and space charge profile analyses using the pulsed electro-acoustic (PEA) technique were performed at different fields up to the EL level. Dipolar orientation generates a long lasting transient current that prevents the conduction level being reached within the experimental protocol (one hour poling time). The continuous EL emission is nevertheless associated with a regime where the conduction becomes dominant over the orientational polarization. Polarization and space charge contribute to the PEA charge profiles. Homo-charge injection at anode and cathode is seen at 20 kV/mm and a penetration of positive space charge in the bulk is detected above 100 kV/mm, suggesting an excitation of the continuous EL by bipolar charge recombination
Recommended from our members
Space charge induced luminescence in epoxy resin
Dielectric breakdown of epoxies is preceded by a light emission from the solid state material, so-called electroluminescence. Very little is known however on the luminescence properties of epoxy. The aim of this paper is to derive information that can be used as a basis to understand the nature of the excited states and their involvement in electrical degradation processes
Recommended from our members
Photoluminescence, recombination induced luminescence and electroluminescence in epoxy resin
Dielectric breakdown of epoxies is preceded by light emission, or so-called electroluminescence, from the solid-state material. Very little is known about the luminescence properties of epoxies. The aim of this paper is to derive information that can be used as a basis to understand the nature of the excited states and their involvement in electrical degradation processes. Three different kinds of stimulation were used to excite the material luminescence. Photoluminescence was performed on the base resin, the hardener and the cured resin. Luminescence excited by a silent discharge has been analysed to identify which of the luminescent centres are optically active upon the recombination of electrical charges and could therefore act as charge traps. Finally, the electroluminescence spectrum has been acquired and compared with the previous ones. Although the identification of the origin of these emissions is far from being complete, it has been found that the photoluminescence from the cured resin is due to in-chain chromophores, which acts as trapping centres. The excited states involved in photoluminescence also seems to be involved in electroluminescence, but other components are detected as well, which could be due to the degradation of the resin molecule under the effect of the electric stress
Communitarian perspectives on social enterprise
Concepts of social enterprise have been debated repeatedly, and continue to cause confusion. In this paper, a meta-theoretical framework is developed through discussion of individualist and communitarian philosophy. Philosophers from both traditions build social theories that emphasise either consensus (a unitarist outlook) or diversity (a pluralist outlook). The various discourses in corporate governance reflect these assumptions and create four distinct approaches that impact on the relationship between capital and labour. In rejecting the traditional discourse of private enterprise, social enterprises have adopted other approaches to tackle social exclusion, each derived from different underlying beliefs about the purpose of enterprise and the nature of governance. The theoretical framework offers a way to understand the diversity found within the sector, including the newly constituted Community Interest Company (CIC).</p
Hirschsprung disease, associated syndromes and genetics: A review
Hirschsprung disease (HSCR, aganglionic megacolon) represents the main genetic cause of functional intestinal obstruction with an incidence of 1/5000 live births. This developmental disorder is a neurocristopathy and is characterised by the absence of the enteric ganglia along a variable length of the intestine. In the last decades, the development of surgical approaches has importantly decreased mortality and morbidity which allowed the emergence of familial cases. Isolated HSCR appears to be a non-Mendelian malformation with low, sex-dependent penetrance, and variable expression according to the length of the aganglionic segment. While all Mendelian modes of inheritance have been described in syndromic HSCR, isolated HSCR stands as a model for genetic disorders with complex patterns of inheritance. The tyrosine kinase receptor RET is the major gene with both rare coding sequence mutations and/or a frequent variant located in an enhancer element predisposing to the disease. Hitherto, 10 genes and five loci have been found to be involved in HSCR development.published_or_final_versio
HOXB5 Cooperates with NKX2-1 in the Transcription of Human RET
The enteric nervous system (ENS) regulates peristaltic movement of the gut, and abnormal ENS causes Hirschsprung's disease (HSCR) in newborns. HSCR is a congenital complex genetic disorder characterised by a lack of enteric ganglia along a variable length of the intestine. The receptor tyrosine kinase gene (RET) is the major HSCR gene and its expression is crucial for ENS development. We have previously reported that (i) HOXB5 transcription factor mediates RET expression, and (ii) mouse with defective HOXB5 activity develop HSCR phenotype. In this study, we (i) elucidate the underlying mechanisms that HOXB5 mediate RET expression, and (ii) examine the interactions between HOXB5 and other transcription factors implicated in RET expression. We show that human HOXB5 binds to the promoter region 5′ upstream of the binding site of NKX2-1 and regulates RET expression. HOXB5 and NKX2-1 form a protein complex and mediate RET expression in a synergistic manner. HSCR associated SNPs at the NKX2-1 binding site (-5G>A rs10900296; -1A>C rs10900297), which reduce NKX2-1 binding, abolish the synergistic trans-activation of RET by HOXB5 and NKX2-1. In contrast to the synergistic activation of RET with NKX2-1, HOXB5 cooperates in an additive manner with SOX10, PAX3 and PHOX2B in trans-activation of RET promoter. Taken together, our data suggests that HOXB5 in coordination with other transcription factors mediates RET expression. Therefore, defects in cis- or trans-regulation of RET by HOXB5 could lead to reduction of RET expression and contribute to the manifestation of the HSCR phenotype
- …