878 research outputs found
Extremely Small Energy Gap in the Quasi-One-Dimensional Conducting Chain Compound SrNbO
Resistivity, optical, and angle-resolved photoemission experiments reveal
unusual one-dimensional electronic properties of highly anisotropic
SrNbO. Along the conducting chain direction we find an extremely small
energy gap of only a few meV at the Fermi level. A discussion in terms of
typical 1D instabilities (Peierls, Mott-Hubbard) shows that neither seems to
provide a satisfactory explanation for the unique properties of SrNbO.Comment: 4 pages, 3 figure
Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium intercalated bundles of single wall carbon nanotubes
We report on the first direct observation of a transition from a
Tomonaga-Luttinger liquid to a Fermi liquid behavior in potassium intercalated
mats of single wall carbon nanotubes (SWCNT). Using high resolution
photoemission spectroscopy an analysis of the spectral shape near the Fermi
level reveals a Tomonaga-Luttinger liquid power law scaling in the density of
states for the pristine sample and for low dopant concentration. As soon as the
doping is high enough to fill bands of the semiconducting tubes a distinct
transition to a bundle of only metallic SWCNT with a scaling behavior of a
normal Fermi liquid occurs. This can be explained by a strong screening of the
Coulomb interaction between charge carriers and/or an increased hopping matrix
element between the tubes.Comment: 5 pages, 4 figure
Ag-coverage-dependent symmetry of the electronic states of the Pt(111)-Ag-Bi interface: The ARPES view of a structural transition
We studied by angle-resolved photoelectron spectroscopy the strain-related
structural transition from a pseudomorphic monolayer (ML) to a striped
incommensurate phase in an Ag thin film grown on Pt(111). We exploited the
surfactant properties of Bi to grow ordered Pt(111)-xMLAg-Bi trilayers with 0 <
x < 5 ML, and monitored the dispersion of the Bi-derived interface states to
probe the structure of the underlying Ag film. We find that their symmetry
changes from threefold to sixfold and back to threefold in the Ag coverage
range studied. Together with previous scanning tunneling microscopy and
photoelectron diffraction data, these results provide a consistent microscopic
description of the coverage-dependent structural transition.Comment: 10 pages, 9 figure
Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3
We exploit time- and angle- resolved photoemission spectroscopy to determine
the evolution of the out-of-equilibrium electronic structure of the topological
insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR
laser pulses has been studied by modelling the dynamics of the hot electrons
after optical excitation. We disentangle a large increase of the effective
temperature T* from a shift of the chemical potential mu*, which is consequence
of the ultrafast photodoping of the conduction band. The relaxation dynamics of
T* and mu* are k-independent and these two quantities uniquely define the
evolution of the excited charge population. We observe that the energy
dependence of the non-equilibrium charge population is solely determined by the
analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure
Ultrafast Optical Control of the Electronic Properties of
We report on the temperature dependence of the electronic
properties, studied at equilibrium and out of equilibrium, by means of time and
angle resolved photoelectron spectroscopy. Our results unveil the dependence of
the electronic band structure across the Fermi energy on the sample
temperature. This finding is regarded as the dominant mechanism responsible for
the anomalous resistivity observed at T* 160 K along with the change of
the charge carrier character from holelike to electronlike. Having addressed
these long-lasting questions, we prove the possibility to control, at the
ultrashort time scale, both the binding energy and the quasiparticle lifetime
of the valence band. These experimental evidences pave the way for optically
controlling the thermoelectric and magnetoelectric transport properties of
Atomic and Electronic Structure of a Rashba - Junction at the BiTeI Surface
The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface
terminations that support spin-split Rashba surface states. Their ambipolarity
can be exploited for creating spin-polarized - junctions at the
boundaries between domains with different surface terminations. We use scanning
tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and
investigate their atomic and electronic properties. The Te- and I-terminated
surfaces are identified owing to their distinct chemical reactivity, and an
apparent height mismatch of electronic origin. The Rashba surface states are
revealed in the STS spectra by the onset of a van Hove singularity at the band
edge. Eventually, an electronic depletion is found on interfacial Te atoms,
consistent with the formation of a space charge area in typical -
junctions.Comment: 5 pages, 4 figure
An ASP-based Solution to the Chemotherapy Treatment Scheduling problem
The problem of scheduling chemotherapy treatments in oncology clinics is a complex problem, given that the solution has to satisfy (as much as possible) several requirements such as the cyclic nature of chemotherapy treatment plans, maintaining a constant number of patients, and the availability of resources, for example, treatment time, nurses, and drugs. At the same time, realizing a satisfying schedule is of upmost importance for obtaining the best health outcomes. In this paper we first consider a specific instance of the problem which is employed in the San Martino Hospital in Genova, Italy, and present a solution to the problem based on Answer Set Programming (ASP). Then, we enrich the problem and the related ASP encoding considering further features often employed in other hospitals, desirable also in S. Martino, and/or considered in related papers. Results of an experimental analysis, conducted on the real data provided by the San Martino Hospital, show that ASP is an effective solving methodology also for this important scheduling problem
- …