5 research outputs found

    Mammalian Homolog of Drosophila Tumor Suppressor Lethal (2) Giant Larvae Interacts with Basolateral Exocytic Machinery in Madin-Darby Canine Kidney Cells

    Get PDF
    The Drosophila tumor suppressor protein lethal (2) giant larvae [l(2)gl] is involved in the establishment of epithelial cell polarity during development. Recently, a yeast homolog of the protein has been shown to interact with components of the post-Golgi exocytic machinery and to regulate a late step in protein secretion. Herein, we characterize a mammalian homolog of l(2)gl, called Mlgl, in the epithelial cell line Madin-Darby canine kidney (MDCK). Consistent with a role in cell polarity, Mlgl redistributes from a cytoplasmic localization to the lateral membrane after contact-naive MDCK cells make cell-cell contacts and establish a polarized phenotype. Phosphorylation within a highly conserved region of Mlgl is required to restrict the protein to the lateral domain, because a recombinant phospho-mutant is distributed in a nonpolar manner. Membrane-bound Mlgl from MDCK cell lysates was coimmunoprecipitated with syntaxin 4, a component of the exocytic machinery at the basolateral membrane, but not with other plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins that are either absent from or not restricted to the basolateral membrane domain. These data suggest that Mlgl contributes to apico-basolateral polarity by regulating basolateral exocytosis

    The Multiprotein Exocyst Complex Is Essential for Cell Separation in Schizosaccharomyces pombe

    No full text
    Schizosaccharomyces pombe cells divide by medial fission through the use of an actomyosin-based contractile ring. A mulitlayered division septum is assembled in concert with ring constriction. Finally, cleavage of the inner layer of the division septum results in the liberation of daughter cells. Although numerous studies have focused on actomyosin ring and division septum assembly, little information is available on the mechanism of cell separation. Here we describe a mutant, sec8-1, that is defective in cell separation but not in other aspects of cytokinesis. sec8-1 mutants accumulate ∌100-nm vesicles and have reduced secretion of acid phosphatase, suggesting that they are defective in exocytosis. Sec8p is a component of the exocyst complex. Using biochemical methods, we show that Sec8p physically interacts with other members of the exocyst complex, including Sec6p, Sec10p, and Exo70p. These exocyst proteins localize to regions of active exocytosis—at the growing ends of interphase cells and in the medial region of cells undergoing cytokinesis—in an F-actin–dependent and exocytosis-independent manner. Analysis of a number of mutations in various exocyst components has established that these components are essential for cell viability. Interestingly, all exocyst mutants analyzed appear to be able to elongate and to assemble division septa but are defective for cell separation. We therefore propose that the fission yeast exocyst is involved in targeting of enzymes responsible for septum cleavage. We further propose that cell elongation and division septum assembly can continue with minimal levels of exocyst function
    corecore