63 research outputs found

    A derivative formula for the free energy function

    Full text link
    We consider bond percolation on the Zd{\bf Z}^d lattice. Let MnM_n be the number of open clusters in B(n)=[−n,n]dB(n)=[-n, n]^d. It is well known that EpMn/(2n+1)dE_pM_n / (2n+1)^d converges to the free energy function κ(p)\kappa(p) at the zero field. In this paper, we show that σp2(Mn)/(2n+1)d\sigma^2_p(M_n)/(2n+1)^d converges to −(p2(1−p)+p(1−p)2)κ′(p)-(p^2(1-p)+p(1-p)^2)\kappa'(p).Comment: 8 pages 1 figur

    Robust nonparametric detection of objects in noisy images

    Full text link
    We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore important connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a finite sample performance of our test.Comment: This paper initially appeared in 2010 as EURANDOM Report 2010-049. Link to the abstract at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-abstract.pdf Link to the paper at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-report.pd

    Equality of bond percolation critical exponents for pairs of dual lattices

    Full text link
    For a certain class of two-dimensional lattices, lattice-dual pairs are shown to have the same bond percolation critical exponents. A computational proof is given for the martini lattice and its dual to illustrate the method. The result is generalized to a class of lattices that allows the equality of bond percolation critical exponents for lattice-dual pairs to be concluded without performing the computations. The proof uses the substitution method, which involves stochastic ordering of probability measures on partially ordered sets. As a consequence, there is an infinite collection of infinite sets of two-dimensional lattices, such that all lattices in a set have the same critical exponents.Comment: 10 pages, 7 figure

    Pattern theorems, ratio limit theorems and Gumbel maximal clusters for random fields

    Get PDF
    We study occurrences of patterns on clusters of size n in random fields on Z^d. We prove that for a given pattern, there is a constant a>0 such that the probability that this pattern occurs at most an times on a cluster of size n is exponentially small. Moreover, for random fields obeying a certain Markov property, we show that the ratio between the numbers of occurrences of two distinct patterns on a cluster is concentrated around a constant value. This leads to an elegant and simple proof of the ratio limit theorem for these random fields, which states that the ratio of the probabilities that the cluster of the origin has sizes n+1 and n converges as n tends to infinity. Implications for the maximal cluster in a finite box are discussed.Comment: 23 pages, 2 figure

    Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs

    Full text link
    We study homogeneous, independent percolation on general quasi-transitive graphs. We prove that in the disorder regime where all clusters are finite almost surely, in fact the expectation of the cluster size is finite. This extends a well-known theorem by Menshikov and Aizenman & Barsky to all quasi-transitive graphs. Moreover we deduce that in this disorder regime the cluster size distribution decays exponentially, extending a result of Aizenman & Newman. Our results apply to both edge and site percolation, as well as long range (edge) percolation. The proof is based on a modification of the Aizenman & Barsky method.Comment: Latex 2e; 25 pages (a4wide); small editorial corrections; one reference adde

    Rigorous confidence intervals for critical probabilities

    Full text link
    We use the method of Balister, Bollobas and Walters to give rigorous 99.9999% confidence intervals for the critical probabilities for site and bond percolation on the 11 Archimedean lattices. In our computer calculations, the emphasis is on simplicity and ease of verification, rather than obtaining the best possible results. Nevertheless, we obtain intervals of width at most 0.0005 in all cases

    Quantum site percolation on amenable graphs

    Full text link
    We consider the quantum site percolation model on graphs with an amenable group action. It consists of a random family of Hamiltonians. Basic spectral properties of these operators are derived: non-randomness of the spectrum and its components, existence of an self-averaging integrated density of states and an associated trace-formula.Comment: 10 pages, LaTeX 2e, to appear in "Applied Mathematics and Scientific Computing", Brijuni, June 23-27, 2003. by Kluwer publisher

    Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters

    Get PDF
    We study invasion percolation in two dimensions, focusing on properties of the outlets of the invasion and their relation to critical percolation and to incipient infinite clusters (IIC's). First we compute the exact decay rate of the distribution of both the weight of the kth outlet and the volume of the kth pond. Next we prove bounds for all moments of the distribution of the number of outlets in an annulus. This result leads to almost sure bounds for the number of outlets in a box B(2^n) and for the decay rate of the weight of the kth outlet to p_c. We then prove existence of multiple-armed IIC measures for any number of arms and for any color sequence which is alternating or monochromatic. We use these measures to study the invaded region near outlets and near edges in the invasion backbone far from the origin.Comment: 38 pages, 10 figures, added a thorough sketch of the proof of existence of IIC's with alternating or monochromatic arms (with some generalizations

    The Alexander-Orbach conjecture holds in high dimensions

    Full text link
    We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior has been established, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes a conjecture of Alexander and Orbach. En route we calculate the one-arm exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica
    • …
    corecore