6 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum

    No full text
    Insect neurohormones (biogenic amines, neuropeptides, and protein hormones) and their G protein-coupled receptors (GPCRs) play a central role in the control of behavior, reproduction, development, feeding and many other physiological processes. The recent completion of several insect genome projects has enabled us to obtain a complete inventory of neurohormone GPCRs in these insects and, by a comparative genomics approach, to analyze the evolution of these proteins. The red flour beetle Tribolium castaneum is the latest addition to the list of insects with a sequenced genome and the first coleopteran (beetle) to be sequenced. Coleoptera is the largest insect order and about 30% of all animal species living on earth are coleopterans. Some coleopterans are severe agricultural pests, which is also true for T. castaneum, a global pest for stored grain and other dried commodities for human consumption. In addition, T. castaneum is a model for insect development. Here, we have investigated the presence of neurohormone GPCRs in Tribolium and compared them with those from the fruit fly Drosophila melanogaster (Diptera) and the honey bee Apis mellifera (Hymenoptera). We found 20 biogenic amine GPCRs in Tribolium (21 in Drosophila; 19 in the honey bee), 48 neuropeptide GPCRs (45 in Drosophila; 35 in the honey bee), and 4 protein hormone GPCRs (4 in Drosophila; 2 in the honey bee). Furthermore, we identified the likely ligands for 45 of these 72 Tribolium GPCRs. A highly interesting finding in Tribolium was the occurrence of a vasopressin GPCR and a vasopressin peptide. So far, the vasopressin/GPCR couple has not been detected in any other insect with a sequenced genome (D. melanogaster and six other Drosophila species, Anopheles gambiae, Aedes aegypti, Bombyx mori, and A. mellifera). Tribolium lives in very dry environments. Vasopressin in mammals is the major neurohormone steering water reabsorption in the kidneys. Its presence in Tribolium, therefore, might be related to the animal's need to effectively control water reabsorption. Other striking differences between Tribolium and the other two insects are the absence of the allatostatin-A, kinin, and corazonin neuropeptide/receptor couples and the duplications of other hormonal systems. Our survey of 340 million years of insect neurohormone GPCR evolution shows that neuropeptide/receptor couples can easily duplicate or disappear during insect evolution. It also shows that Drosophila is not a good representative of all insects, because several of the hormonal systems that we now find in Tribolium do not exist in Drosophila.status: publishe

    The genomes of two key bumblebee species with primitive eusocial organization

    No full text
    Background The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    The genomes of two key bumblebee species with primitive eusocial organization

    No full text
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Insights into social insects from the genome of the honeybee Apis mellifera

    No full text
    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement
    corecore