8,797 research outputs found

    Spectrum of a duality-twisted Ising quantum chain

    Get PDF
    The Ising quantum chain with a peculiar twisted boundary condition is considered. This boundary condition, first introduced in the framework of the spin-1/2 XXZ Heisenberg quantum chain, is related to the duality transformation, which becomes a symmetry of the model at the critical point. Thus, at the critical point, the Ising quantum chain with the duality-twisted boundary is translationally invariant, similar as in the case of the usual periodic or antiperiodic boundary conditions. The complete energy spectrum of the Ising quantum chain is calculated analytically for finite systems, and the conformal properties of the scaling limit are investigated. This provides an explicit example of a conformal twisted boundary condition and a corresponding generalised twisted partition function.Comment: LaTeX, 7 pages, using IOP style

    Trigonometric R Matrices related to `Dilute' Birman--Wenzl--Murakami Algebra

    Get PDF
    Explicit expressions for three series of RR matrices which are related to a ``dilute'' generalisation of the Birman--Wenzl--Murakami are presented. Of those, one series is equivalent to the quantum RR matrices of the Dn+1(2)D^{(2)}_{n+1} generalised Toda systems whereas the remaining two series appear to be new.Comment: 5 page

    Spectral and Diffusive Properties of Silver-Mean Quasicrystals in 1,2, and 3 Dimensions

    Get PDF
    Spectral properties and anomalous diffusion in the silver-mean (octonacci) quasicrystals in d=1,2,3 are investigated using numerical simulations of the return probability C(t) and the width of the wave packet w(t) for various values of the hopping strength v. In all dimensions we find C(t)\sim t^{-\delta}, with results suggesting a crossover from \delta<1 to \delta=1 when v is varied in d=2,3, which is compatible with the change of the spectral measure from singular continuous to absolute continuous; and we find w(t)\sim t^{\beta} with 0<\beta(v)<1 corresponding to anomalous diffusion. Results strongly suggest that \beta(v) is independent of d. The scaling of the inverse participation ratio suggests that states remain delocalized even for very small hopping amplitude v. A study of the dynamics of initially localized wavepackets in large three-dimensional quasiperiodic structures furthermore reveals that wavepackets composed of eigenstates from an interval around the band edge diffuse faster than those composed of eigenstates from an interval of the band-center states: while the former diffuse anomalously, the latter appear to diffuse slower than any power law.Comment: 11 pages, 10 figures, 1 tabl

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde

    Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology

    Full text link

    Extinction Rates for Fluctuation-Induced Metastabilities : A Real-Space WKB Approach

    Full text link
    The extinction of a single species due to demographic stochasticity is analyzed. The discrete nature of the individual agents and the Poissonian noise related to the birth-death processes result in local extinction of a metastable population, as the system hits the absorbing state. The Fokker-Planck formulation of that problem fails to capture the statistics of large deviations from the metastable state, while approximations appropriate close to the absorbing state become, in general, invalid as the population becomes large. To connect these two regimes, a master equation based on a real space WKB method is presented, and is shown to yield an excellent approximation for the decay rate and the extreme events statistics all the way down to the absorbing state. The details of the underlying microscopic process, smeared out in a mean field treatment, are shown to be crucial for an exact determination of the extinction exponent. This general scheme is shown to reproduce the known results in the field, to yield new corollaries and to fit quite precisely the numerical solutions. Moreover it allows for systematic improvement via a series expansion where the small parameter is the inverse of the number of individuals in the metastable state

    Coherent optical transfer of Feshbach molecules to a lower vibrational state

    Full text link
    Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. As the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation (BEC) of molecules in the vibrational ground state.Comment: 4 pages, 5 figure

    Dilute Birman--Wenzl--Murakami Algebra and Dn+1(2)D^{(2)}_{n+1} models

    Get PDF
    A ``dilute'' generalisation of the Birman--Wenzl--Murakami algebra is considered. It can be ``Baxterised'' to a solution of the Yang--Baxter algebra. The Dn+1(2)D^{(2)}_{n+1} vertex models are examples of corresponding solvable lattice models and can be regarded as the dilute version of the Bn(1)B^{(1)}_{n} vertex models.Comment: 11 page
    • …
    corecore