1,912 research outputs found

    HELIOS-K: An Ultrafast, Open-source Opacity Calculator for Radiative Transfer

    Full text link
    We present an ultrafast opacity calculator that we name HELIOS-K. It takes a line list as an input, computes the shape of each spectral line and provides an option for grouping an enormous number of lines into a manageable number of bins. We implement a combination of Algorithm 916 and Gauss-Hermite quadrature to compute the Voigt profile, write the code in CUDA and optimise the computation for graphics processing units (GPUs). We restate the theory of the k-distribution method and use it to reduce ∼105\sim 10^5 to 10810^8 lines to ∼10\sim 10 to 10410^4 wavenumber bins, which may then be used for radiative transfer, atmospheric retrieval and general circulation models. The choice of line-wing cutoff for the Voigt profile is a significant source of error and affects the value of the computed flux by ∼10%\sim 10\%. This is an outstanding physical (rather than computational) problem, due to our incomplete knowledge of pressure broadening of spectral lines in the far line wings. We emphasize that this problem remains regardless of whether one performs line-by-line calculations or uses the k-distribution method and affects all calculations of exoplanetary atmospheres requiring the use of wavelength-dependent opacities. We elucidate the correlated-k approximation and demonstrate that it applies equally to inhomogeneous atmospheres with a single atomic/molecular species or homogeneous atmospheres with multiple species. Using a NVIDIA K20 GPU, HELIOS-K is capable of computing an opacity function with ∼105\sim 10^5 spectral lines in ∼1\sim 1 second and is publicly available as part of the Exoclimes Simulation Platform (ESP; www.exoclime.org).Comment: Accepted by ApJ. 8 pages, 5 figure

    The GENGA Code: Gravitational Encounters in N-body simulations with GPU Acceleration

    Full text link
    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: Integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in respect of energy conservation and performance, and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to eight times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with compute capability of at least 2.0.Comment: Accepted by ApJ. 18 pages, 17 figures, 4 table

    Creation of ultracold Sr2 molecules in the electronic ground state

    Full text link
    We report on the creation of ultracold 84Sr2 molecules in the electronic ground state. The molecules are formed from atom pairs on sites of an optical lattice using stimulated Raman adiabatic passage (STIRAP). We achieve a transfer efficiency of 30% and obtain 4x10^4 molecules with full control over the external and internal quantum state. STIRAP is performed near the narrow 1S0-3P1 intercombination transition, using a vibrational level of the 0u potential as intermediate state. In preparation of our molecule association scheme, we have determined the binding energies of the last vibrational levels of the 0u, 1u excited-state, and the 1\Sigma_g^+ ground-state potentials. Our work overcomes the previous limitation of STIRAP schemes to systems with Feshbach resonances, thereby establishing a route that is applicable to many systems beyond bi-alkalis.Comment: 7 pages, 7 figures, 3 table

    Stochasticity & Predictability in Terrestrial Planet Formation

    Get PDF
    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6\nu_6 resonance and we find that the mass distribution peaks at the ν5\nu_5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003, and HD 20781 may host undetected giant planets.Comment: replaced to match published version, 20 pages, 11 figures, published in MNRAS, simulation outputs available at https://cheleb.net/astro/sp15

    Bose-Einstein condensation of 86Sr

    Full text link
    We report on the attainment of Bose-Einstein condensation of 86Sr. This isotope has a scattering length of about +800 a0 and thus suffers from fast three-body losses. To avoid detrimental atom loss, evaporative cooling is performed at low densities around 3x10^12 cm^-3 in a large volume optical dipole trap. We obtain almost pure condensates of 5x10^3 atoms.Comment: 4 pages, 3 figure
    • …
    corecore