17 research outputs found

    A post-translational modification of human Norovirus capsid protein attenuates glycan binding

    Get PDF
    Attachment of human noroviruses to histo blood group antigens (HBGAs) is essential for infection, but how this binding event promotes the infection of host cells is unknown. Here, we employ protein NMR experiments supported by mass spectrometry and crystallography to study HBGA binding to the P-domain of a prevalent virus strain (GII.4). We report a highly selective transformation of asparagine 373, located in an antigenic loop adjoining the HBGA binding site, into an iso-aspartate residue. This spontaneous post-translational modification (PTM) proceeds with an estimated half-life of a few days at physiological temperatures, independent of the presence of HBGAs but dramatically affecting HBGA recognition. Sequence conservation and the surface-exposed position of this PTM suggest an important role in infection and immune recognition for many norovirus strains.ISSN:2041-172

    Pol II phosphorylation regulates a switch between transcriptional and splicing condensates

    Full text link
    The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference

    Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD

    Full text link
    Recently, several genome-wide association studies (GWAS) on bipolar disorder (BPD) suggested novel risk genes. However, only few of them were followed up and further, the specificity of these genes is even more elusive. To address these issues, we genotyped SNPs in ANK3, CACNA1C, CMTM8, DGKH, EGFR, and NPAS3, which were significantly associated with BPD in previous GWAS, in a sample of 380 BPD patients. Replicated SNPs were then followed up in patients suffering from unipolar depression (UPD; n=387) or adult attention-deficit/hyperactivity disorder (aADHD; n=535). While we could not confirm an association of ANK3, CACNA1C, and EGFR with BPD, 10 SNPs in DGKH, CMTM8, and NPAS3 were nominally associated with disease, with two DGKH markers surviving correction for multiple testing. When these were followed up in UPD and aADHD, seven DGKH SNPs were also associated with UPD, while one SNP each in NPAS3 and CMTM8 and four in DGKH were linked to aADHD. Furthermore, a DGKH haplotype consisting of rs994856/rs9525580/rs9525584 GAT was associated with all disorders tested, while the complementary AGC haplotype was protective. The corresponding haploblock spans a 27-kb region covering exons coding for amino acids 65–243, and thus might include functional variants yet to be identified. We demonstrate an association of DGKH with BPD, UPD, and aADHD by applying a two-stage design. These disorders share the feature of mood instability, so that this phenotype might be associated with genetic variation in DGKH.Heike Weber, Sarah Kittel-Schneider, Alexandra Gessner, Katharina Domschke, Maria Neuner, Christian P Jacob, Henriette N Buttenschon, Andrea Boreatti-Hümmer, Julia Volkert, Sabine Herterich, Bernhard T Baune, Silke Gross-Lesch, Juliane Kopf, Susanne Kreiker, Thuy Trang Nguyen, Lena Weissflog, Volker Arolt, Ole Mors, Jürgen Deckert, Klaus-Peter Lesch and Andreas Rei
    corecore