5,359 research outputs found

    A synthetic method for assessing small dams flood wave

    Get PDF

    The small polaron crossover: comparison between exact results and vertex correction approximation

    Full text link
    We study the crossover from quasi free electron to small polaron in the Holstein model for a single electron by means of both exact and self-consistent calculations in one dimension and on an infinite coordination lattice. We show that the crossover occurs when both strong coupling and multiphonon conditions are fulfilled leading to different relevant coupling constants in adiabatic and anti-adiabatic region of the parameters space. We also show that the self-consistent calculations obtained by including the first electron-phonon vertex correction give accurate results in a sizeable region of the phase diagram well separated from the polaronic crossover.Comment: 6 pages, revtex (europhys.sty,euromacr.tex); 3 postscript figure

    High TcT_c superconductivity in MgB2_2 by nonadiabatic pairing

    Full text link
    The evidence for the key role of the σ\sigma bands in the electronic properties of MgB2_2 points to the possibility of nonadiabatic effects in the superconductivity of these materials. These are governed by the small value of the Fermi energy due to the vicinity of the hole doping level to the top of the σ\sigma bands. We show that the nonadiabatic theory leads to a coherent interpretation of Tc=39T_c = 39 K and the boron isotope coefficient αB=0.30\alpha_{\rm B} = 0.30 without invoking very large couplings and it naturally explains the role of the disorder on TcT_c. It also leads to various specific predictions for the properties of MgB2_2 and for the material optimization of these type of compounds.Comment: 4 revtex pages, 3 eps figures, to appear on Phys. Rev. Let

    Anisotropic random resistor networks: a model for piezoresistive response of thick-film resistors

    Full text link
    A number of evidences suggests that thick-film resistors are close to a metal-insulator transition and that tunneling processes between metallic grains are the main source of resistance. We consider as a minimal model for description of transport properties in thick-film resistors a percolative resistor network, with conducting elements governed by tunneling. For both oriented and randomly oriented networks, we show that the piezoresistive response to an applied strain is model dependent when the system is far away from the percolation thresold, while in the critical region it acquires universal properties. In particular close to the metal-insulator transition, the piezoresistive anisotropy show a power law behavior. Within this region, there exists a simple and universal relation between the conductance and the piezoresistive anisotropy, which could be experimentally tested by common cantilever bar measurements of thick-film resistors.Comment: 7 pages, 2 eps figure

    A survey of nonadiabatic superconductivity in cuprates and fullerides

    Full text link
    High-TcT_c superconductors are characterized by very low carrier densities. This feature leads to two fundamental consequences: on one hand the Fermi energies are correspondingly small and they can be of the same order of phonon frequencies. In such a situation nonadiabatic corrections arising from the breakdown of Migdal's theorem can not be longer neglected. In addition, small carrier densities imply poor screening and correlation effects have to be taken into account. We present a comprehensive overview of the theory of superconductivity generalized into the nonadiabatic regime which is qualitatively different from the conventional one. In this framework some of the observed properties of the cuprates and the fullerene compounds can be naturally accounted for, and a number of theoretical predictions are proposed that can be experimentally tested.Comment: 1 eps figure, ijmpb-macros, proceeding of SATT10, to appear on Int. Journ. Mod. Phys.

    A model of transport nonuniversality in thick-film resistors

    Full text link
    We propose a model of transport in thick-film resistors which naturally explains the observed nonuniversal values of the conductance exponent t extracted in the vicinity of the percolation transition. Essential ingredients of the model are the segregated microstructure typical of thick-film resistors and tunneling between the conducting grains. Nonuniversality sets in as consequence of wide distribution of interparticle tunneling distances.Comment: 3 pages, 1 figur
    • 

    corecore