8 research outputs found

    Emerging organic compounds in European groundwater

    Get PDF
    In Europe, emerging organic compounds (EOCs) in groundwater is a growing research area. Prioritisation for monitoring EOCs was formalised in 2019 in Europe through the development of the first voluntary groundwater watch list (GWWL). Despite this, groundwater occurrence data in the peer reviewed literature for Europe has not been reviewed to date. Questions surrounding the effect, toxicity, movement in the subsurface and unsaturated zone make the process of regulating EOC use difficult. The aim in Europe is to develop a unified strategy for the classification, and prioritisation of EOCs to be monitored in groundwater. This paper compiles evidence from the recent published studies from across Europe, since 2012 when the last major literature global review of EOCs in groundwater took place. A total of 39 studies were identified for review based on specific selection criteria (geography, publication date, sample size>10, inclusion of EOCs data). Data on specific compounds, and associated meta-data are compiled and reviewed. The two most frequently detected EOCs, carbamazepine and caffeine, occurred in groundwater at concentrations of up to 2.3 and 14.8 μg/L, respectively

    Water Policies and Conflict Resolution of Public Participation Decision-Making Processes Using Prioritized Ordered Weighted Averaging (OWA) Operators

    Full text link
    [EN] There is a growing interest in environmental policies about how to implement public participation engagement in the context of water resources management. This paper presents a robust methodology, based on ordered weighted averaging (OWA) operators, to conflict resolution decision-making problems under uncertain environments due to both information and stakeholders' preferences. The methodology allows integrating heterogeneous interests of the general public and stakeholders on account of their different degree of acceptance or preference and level of influence or power regarding the measures and policies to be adopted, and also of their level of involvement (i.e., information supply, consultation and active involvement). These considerations lead to different environmental and socio-economic outcomes, and levels of stakeholders' satisfaction. The methodology establishes a prioritization relationship over the stakeholders. The individual stakeholders' preferences are aggregated through their associated weights, which depend on the satisfaction of the higher priority decision maker. The methodology ranks the optimal management strategies to maximize the stakeholders' satisfaction. It has been successfully applied to a real case study, providing greater fairness, transparency, social equity and consensus among actors. Furthermore, it provides support to environmental policies, such as the EU Water Framework Directive (WFD), improving integrated water management while covering a wide range of objectives, management alternatives and stakeholders.Llopis Albert, C.; Merigó-Lindahl, JM.; Liao, H.; Xu, Y.; Grima-Olmedo, J.; Grima-Olmedo, C. (2018). Water Policies and Conflict Resolution of Public Participation Decision-Making Processes Using Prioritized Ordered Weighted Averaging (OWA) Operators. Water Resources Management. 32(2):497-510. https://doi.org/10.1007/s11269-017-1823-2S497510322Amin GR, Sadeghi H (2010) Application of prioritized aggregation operators in preference voting. Int J Intell Syst 25(10):1027–1034Chen TY (2014) A prioritized aggregation operator-based approach to multiple criteria decision making using interval-valued intuitionistic fuzzy sets: A comparative perspective. Inf Sci 281:97–112Chen LH, Xu ZS (2014) A prioritized aggregation operator based on the OWA operator and prioritized measures. J Intell Fuzzy Syst 27:1297–1307Chen LH, Xu ZS, Yu XH (2014a) Prioritized measure-guided aggregation operators. IEEE Trans Fuzzy Syst 22:1127–1138Chen LH, Xu ZS, Yu XH (2014b) Weakly prioritized measure aggregation in prioritized multicriteria decision making. Int J Intell Syst 29:439–461CHJ (2016). Júcar river basin authority http://www.chj.es/CHS (2016). Segura river basin authority http://www.chsegura.es/Dong JY, Wan SP (2016) A new method for prioritized multi-criteria group decision making with triangular intuitionistic fuzzy numbers. J Intell Fuzzy Syst 30:1719–1733EC (2000). Directive 2000/60/EC of the European Parliament and of the Council of October 23 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities, L327/1eL327/72 22.12.2000Jackson S, Tan P-L, Nolan S (2012) Tools to enhance public participation and confidence in the development of the Howard East aquifer water plan, Northern Territory. J Hydrol 474:22–28Jin FF, Ni ZW, Chen HY (2016) Note on “Hesitant fuzzy prioritized operators and their application to multiple attribute decision making”. Knowl-Based Syst 96:115–119Kentel E, Aral MM (2007) Fuzzy Multiobjective Decision-Making Approach for Groundwater Resources Management. J Hydrol Eng 12(2):206–217. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:2(206).Kirchherr J, Charles KJ, Walton MJ (2016) Multi-causal pathways of public opposition to dam project in Asia: A fuzzy set qualitative comparative analysis (fsQCA). Glob Environ Chang 41:33–45. https://doi.org/10.1016/j.gloenvcha.2016.08.001Llopis-Albert C, Pulido-Velazquez D (2015) Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrol Process 29(8):2052–2064. https://doi.org/10.1002/hyp.10354Llopis-Albert C, Palacios-Marqués D, Soto-Acosta P (2015) Decision-making and stakeholders constructive participation in environmental projects. J Bus Res 68:1641–1644. https://doi.org/10.1016/j.jbusres.2015.02.010Llopis-Albert C, Merigó JM, Xu Y, Huchang L (2017) Improving regional climate projections by prioritized aggregation via ordered weighted averaging operators. Environ Eng Sci. https://doi.org/10.1089/ees.2016.0546Maia R (2017) The WFD Implementation in the European Member States. Water Resour Manag 31(10):3043–3060. https://doi.org/10.1007/s11269-017-1723-5Malczewski J, Chapman T, Flegel C, Walters D, Shrubsole D, Healy MA (2003) GIS - multicriteria evaluation with ordered weighted averaging (OWA): case study of developing watershed management strategies. Environ Plan A 35:1769–1784. https://doi.org/10.1068/a35156Merigó JM, Casanovas M (2011) The uncertain generalized owa operator and its application to financial decision making. Int J Inf Technol Decis Mak 10(2):211–230Merigó JM, Yager RR (2013) Generalized moving averages, distance measures and OWA operators. Int J Uncertain, Fuzziness Knowl-Based Syst 21(4):533–559Merigó JM, Palacios-Marqués D, Ribeiro-Navarrete B (2015) Aggregation systems for sales forecasting. J Bus Res 68:2299–2304Mesiar R, Stupnanová A, Yager RR (2015) Generalizations of OWA Operators. IEEE Trans Fuzzy Syst 23(6):2154–2162O’Hagan M (1988) Aggregating Template Rule Antecedents in Real-time Expert Systems with Fuzzy Set Logic. In: Proceedings of 22nd annual IEEE Asilomar Conference on Signals. IEEE and Maple Press, Pacific Grove, Systems and Computers, pp 681–689Rahmani MA, Zarghami M (2013) A new approach to combine climate change projections by ordered weighting averaging operator; applications to northwestern provinces of Iran. Glob Planet Chang 102:41–50Ran LG, Wei GW (2015) Uncertain prioritized operators and their application to multiple attribute group decision making. Technol Econ Dev Econ 21:118–139Ruiz-Villaverde, A., García-Rubio, M.A. (2017). Public Participation in European Water Management: from Theory to Practice. Water Resour Manag 31(8), 2479–2495. https://doi.org/10.1007/s11269-016-1355-1Sadiq R, Tesfamariam S (2007) Probability density functions based weights for ordered weighted averaging (OWA) operators: An example of water quality indices. Eur J Oper Res 182:1350–1368Sadiq R, Rodríguez MJ, Tesfamariam S (2010) Integrating indicators for performance assessment of small water utilities using ordered weighted averaging (OWA) operators. Expert Syst Appl 37:4881–4891Verma R, Sharma B (2016) Prioritized information fusion method for triangular fuzzy information and its application to multiple attribute decision making. Int J Uncertain, Fuzziness Knowl-Based Syst 24:265–290Wang HM, Xu YJ, Merigó JM (2014) Prioritized aggregation for non-homogeneous group decision making in water resource management. Econ Comput Econ Cybern Stud Res 48(1):247–258Wei GW (2012) Hesitant fuzzy prioritized operators. Knowl-Based Syst 31:176–182Wei CP, Tang XJ (2012) Generalized prioritized aggregation operators. Int J Intell Syst 27:578–589Xu ZS (2005) An Overview of Methods for Determining OWA Weights. Int J Intell Syst 20:843–865Yager RR (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Transactions on Systems. Man Cybern B 18(1988):183–190Yager RR (2008) Prioritized Aggregation Operators. Int J Approx Reason 48:263–274Yan H-B, Huynh V-N, Nakamori Y, Murai T (2011) On prioritized weighted aggregation in multi-criteria decision making. Expert Syst Appl 38(1):812–823Ye J (2014) Prioritized aggregation operators of trapezoidal intuitionistic fuzzy sets and their application to multicriteria decision-making. Neural Comput & Applic 25:1447–1454Yu XH, Xu ZS, Liu SS (2013) Prioritized multi-criteria decision making based on preference relations. Comput Ind Eng 66:104–115Zadeh LA (1983) A Computational Approach to Fuzzy Quantifiers in Natural Languages. Comput Math Appl 9:149–184Zarghami M, Szidarovszky F (2009) Revising the OWA operator for multi criteria decision making problems under uncertainty. Eur J Oper Res 198:259–265Zarghami M, Ardakanian R, Memariani A, Szidarovszky F (2008) Extended OWA Operator for Group Decision Making on Water Resources Projects. J Water Resour Plan Manag 134(3):266–275. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(266)Zarghami M, Szidarovszky F, Ardakanian R (2009) Multi-attribute decision making on inter-basin water transfer projects. Transaction E. Ind Eng 16(1):73–80Zhao XF, Li QX, Wei GW (2014) Some prioritized aggregating operators with linguistic information and their application to multiple attribute group decision making. J Intell Fuzzy Syst 26:1619–1630Zhao N, Xu ZS, Ren ZL (2016) On typical hesitant fuzzy prioritized “or” operator in multi-attribute decision making. Int J Intell Syst 31:73–100Zhou LY, Lin R, Zhao XF, Wei GW (2013) Uncertain linguistic prioritized aggregation operators and their application to multiple attribute group decision making. Int J Uncertain, Fuzziness Knowl-Based Syst 21:603–627Zhou LG, Merigó JM, Chen HY, Liu JP (2016) The optimal group continuous logarithm compatibility measure for interval multiplicative preference relations based on the COWGA operator. Inf Sci 328:250–26

    Assessment of chloride natural background levels by applying statistical approaches. Analyses of European coastal aquifers in different environments

    Get PDF
    ABSTRACT: Estimated natural background levels (NBLs) are needed to assess groundwater chemical status according to the EU Groundwater Directive. They are commonly derived for different substances by applying statistical methodologies. Due to the complexity of the sea water intrusion process, some of those methods do not always provide appropriate assessment of chloride NBLs. This paper analyzes the applicability of different NBL estimation methods in five EU coastal aquifers with significant differences in available datasets and hydrogeological set-tings. A sensitivity analysis of results to different constraints was performed to remove samples with anthro-pogenic impacts. A novel statistical approach combining different methods to identify the range of chloride NBLs is proposed. In all pilots the estimated NBLs were below 85 mg/L and fitted well with previous studies and expert judgment, except Campina del Faro aquifer (the maximum being 167.5 mg/L). Although this approach is more time consuming, it provides a more robust solution.info:eu-repo/semantics/publishedVersio

    XRN 5'→3' exoribonucleases: structure, mechanisms and functions

    Full text link
    The XRN family of 5′ → 3′ exoribonucleases is critical for ensuring the fidelity of cellular RNA turnover in eukaryotes. Highly conserved across species, the family is typically represented by one cytoplasmic enzyme (XRN1/PACMAN or XRN4) and one or more nuclear enzymes (XRN2/RAT1 and XRN3). Cytoplasmic and/or nuclear XRNs have proven to be essential in all organisms tested, and deficiencies can have severe developmental phenotypes, demonstrating that XRNs are indispensable in fungi, plants and animals. XRNs degrade diverse RNA substrates during general RNA decay and function in specialized processes integral to RNA metabolism, such as nonsense-mediated decay (NMD), gene silencing, rRNA maturation, and transcription termination. Here, we review current knowledge of XRNs, highlighting recent work of high impact and future potential. One example is the breakthrough in our understanding of how XRN1 processively degrades 5′ monophosphorylated RNA, revealed by its crystal structure and mutational analysis. The expanding knowledge of XRN substrates and interacting partners is outlined and the functions of XRNs are interpreted at the organismal level using available mutant phenotypes. Finally, three case studies are discussed in more detail to underscore a few of the most exciting areas of research on XRN function: XRN4 involvement in small RNA-associated processes in plants, the roles of XRN1/PACMAN in Drosophila development, and the function of human XRN2 in nuclear transcriptional quality control. This article is part of a Special Issue entitled: RNA Decay mechanisms

    Influence of Pyro-Gasification and Activation Conditions on the Porosity of Activated Biochars: A Literature Review

    Full text link

    Production and extraction of carotenoids produced by microorganisms

    Full text link
    corecore