58 research outputs found
Charge fluctuations and electron-phonon interaction in the finite- Hubbard model
In this paper we employ a gaussian expansion within the finite-
slave-bosons formalism to investigate the momentum structure of the
electron-phonon vertex function in the Hubbard model as function of and
. The suppression of large momentum scattering and the onset a small- peak structure, parametrized by a cut-off , are shown to be
essentially ruled by the band narrowing factor due to the
electronic correlation. A phase diagram of and in the whole
- space is presented. Our results are in more than qualitative agreement
with a recent numerical analysis and permit to understand some anomalous
features of the Quantum Monte Carlo data.Comment: 4 pages, eps figures include
Electron-phonon vertex in the two-dimensional one-band Hubbard model
Using quantum Monte Carlo techniques, we study the effects of electronic
correlations on the effective electron-phonon (el-ph) coupling in a
two-dimensional one-band Hubbard model. We consider a momentum-independent bare
ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we
find that the on-site Coulomb interaction acts to effectively suppress the
ionic el-ph coupling at all electron- and phonon- momenta. In this regime, our
numerical simulations are in good agreement with the results of perturbation
theory to order . However, entering the strong-correlation regime, we find
that the forward scattering process stops decreasing and begins to
substantially increase as a function of , leading to an effective el-ph
coupling which is peaked in the forward direction. Whereas at weak and
intermediate Coulomb interactions, screening is the dominant correlation effect
suppressing the el-ph coupling, at larger values irreducible vertex
corrections become more important and give rise to this increase. These vertex
corrections depend crucially on the renormalized electronic structure of the
strongly correlated system.Comment: 5 pages, 4 eps-figures, minor change
Band-filling effects on electron-phonon properties of normal and superconducting state
We address the effect of band filling on the effective electron mass
and the superconducting critical temperature in a electron-phonon system.
We compare the vertex corrected theory with the non-crossing approximation of
the Holstein model within a local approximation. We identify two regions of the
electron density where and are enhanced or decreased by the
inclusion of the vertex diagrams. We show that the crossover between the
enhancement at low density and the decrease towards half filling is almost
independent of the microscopic electron-phonon parameters. These different
behaviors are explained in terms of the net sign of the vertex diagrams which
is positive at low densities and negative close to half filling. Predictions of
the present theory for doped MgB, which is argued to be in the low density
regime, are discussed.Comment: 13 revtex pages, figures eps include
Schwinger-Keldysh Approach to Disordered and Interacting Electron Systems: Derivation of Finkelstein's Renormalization Group Equations
We develop a dynamical approach based on the Schwinger-Keldysh formalism to
derive a field-theoretic description of disordered and interacting electron
systems. We calculate within this formalism the perturbative RG equations for
interacting electrons expanded around a diffusive Fermi liquid fixed point, as
obtained originally by Finkelstein using replicas. The major simplifying
feature of this approach, as compared to Finkelstein's is that instead of replicas, we only need to consider N=2 species. We compare the dynamical
Schwinger-Keldysh approach and the replica methods, and we present a simple and
pedagogical RG procedure to obtain Finkelstein's RG equations.Comment: 22 pages, 14 figure
Poor screening and nonadiabatic superconductivity in correlated systems
In this paper we investigate the role of the electronic correlation on the
hole doping dependence of electron-phonon and superconducting properties of
cuprates. We introduce a simple analytical expression for the one-particle
Green's function in the presence of electronic correlation and we evaluate the
reduction of the screening properties as the electronic correlation increases
by approaching half-filling. The poor screening properties play an important
role within the context of the nonadiabatic theory of superconductivity. We
show that a consistent inclusion of the reduced screening properties in the
nonadiabatic theory can account in a natural way for the - phase
diagram of cuprates. Experimental evidences are also discussed.Comment: 12 Pages, 6 Figures, Accepted on Physical Review
Critical Raw Materials Saving by Protective Coatings under Extreme Conditions: A Review of Last Trends in Alloys and Coatings for Aerospace Engine Applications
Several applications, where extreme conditions occur, require the use of alloys often containing many critical elements. Due to the ever increasing prices of critical raw materials (CRMs)
linked to their high supply risk, and because of their fundamental and large utilization in high tech
products and applications, it is extremely important to find viable solutions to save CRMs usage.
Apart from increasing processes’ efficiency, substitution, and recycling, one of the alternatives to
preserve an alloy and increase its operating lifetime, thus saving the CRMs needed for its manufacturing, is to protect it by a suitable coating or a surface treatment. This review presents the most recent
trends in coatings for application in high temperature alloys for aerospace engines. CRMs’ current
and future saving scenarios in the alloys and coatings for the aerospace engine are also discussed.
The overarching aim of this paper is to raise awareness on the CRMs issue related to the alloys and
coating for aerospace, suggesting some mitigation measures without having the ambition nor to give
a complete overview of the topic nor a turnkey solution
Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor
We analyze the effects of an electron-phonon interaction on the one-electron
spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case
of an Einstein phonon mode with various momentum-dependent electron-phonon
couplings and compare the structure produced in A(k,omega) with that obtained
from coupling to the magnetic pi-resonant mode. We find that if the strength of
the interactions are adjusted to give the same renormalization at the nodal
point, the differences in A(k,omega) are generally small but possibly
observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available
upon request
Interplay of Electron-Phonon Interaction and Electron Correlation in High Temperature Superconductivity
We study the electron-phonon interaction in the strongly correlated
superconducting cuprates. Two types of the electron-phonon interactions are
introduced in the model; the diagonal and off-diagonal interactions which
modify the formation energy of the Zhang-Rice singlet and its transfer
integral, respectively. The characteristic phonon-momentum and
electron-momentum dependence resulted from the off-diagonal coupling
can explain a variety of experiments. The vertex correction for the
electron-phonon interaction is formulated in the SU(2) slave-boson theory by
taking into account the collective modes in the superconducting ground states.
It is shown that the vertex correction enhances the attractive potential for
the d-wave paring mediated by phonon with around
which corresponds to the half-breathing mode of the oxygen
motion.Comment: 14 pages, 13 figure
- …