39 research outputs found
Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry
Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%
Association between loop diuretic dose changes and outcomes in chronic heart failure: observations from the ESC-EORP Heart Failure Long-Term Registry
[Abstract]
Aims. Guidelines recommend down-titration of loop diuretics (LD) once euvolaemia is achieved. In outpatients with heart
failure (HF), we investigated LD dose changes in daily cardiology practice, agreement with guideline recommendations,
predictors of successful LD down-titration and association between dose changes and outcomes.
Methods
and results.
We included 8130 HF patients from the ESC-EORP Heart Failure Long-Term Registry. Among patients who had dose
decreased, successful decrease was defined as the decrease not followed by death, HF hospitalization, New York Heart
Association class deterioration, or subsequent increase in LD dose. Mean age was 66±13 years, 71% men, 62% HF
with reduced ejection fraction, 19% HF with mid-range ejection fraction, 19% HF with preserved ejection fraction.
Median [interquartile range (IQR)] LD dose was 40 (25–80) mg. LD dose was increased in 16%, decreased in 8.3%
and unchanged in 76%. Median (IQR) follow-up was 372 (363–419) days. Diuretic dose increase (vs. no change) was
associated with HF death [hazard ratio (HR) 1.53, 95% confidence interval (CI) 1.12–2.08; P = 0.008] and nominally
with cardiovascular death (HR 1.25, 95% CI 0.96–1.63; P = 0.103). Decrease of diuretic dose (vs. no change) was
associated with nominally lower HF (HR 0.59, 95% CI 0.33–1.07; P = 0.083) and cardiovascular mortality (HR 0.62 95% CI 0.38–1.00; P = 0.052). Among patients who had LD dose decreased, systolic blood pressure [odds ratio
(OR) 1.11 per 10 mmHg increase, 95% CI 1.01–1.22; P = 0.032], and absence of (i) sleep apnoea (OR 0.24, 95% CI
0.09–0.69; P = 0.008), (ii) peripheral congestion (OR 0.48, 95% CI 0.29–0.80; P = 0.005), and (iii) moderate/severe
mitral regurgitation (OR 0.57, 95% CI 0.37–0.87; P = 0.008) were independently associated with successful decrease.
Conclusion. Diuretic dose was unchanged in 76% and decreased in 8.3% of outpatients with chronic HF. LD dose increase was
associated with worse outcomes, while the LD dose decrease group showed a trend for better outcomes compared
with the no-change group. Higher systolic blood pressure, and absence of (i) sleep apnoea, (ii) peripheral congestion,
and (iii) moderate/severe mitral regurgitation were independently associated with successful dose decrease
Physicochemical studies of cadmium(II) biosorption by the invasive alga in europe, Sargassum muticum
In recent years, there has been a significant increase in the studies concerning brown seaweed as biosorbents for metal removal owing to their high binding ability and low cost. This work reports the results of a study regarding the cadmium binding equilibria of dead biomass from the seaweed Sargassum muticum; this alga is a pest fouling organism that competes with the local fucalean species and may also interfere with the "sea industry" therefore, it would constitute an ideal material to be used as biosorbent. Seven different treatments were tested in order to obtain a stable biomass that could be suitable for industrial use under a broad range of operational conditions. The treatments employed were protonation, chemical cross-linking with formaldehyde, KOH, Ca(OH)2 and CaCl2 or physical treatments with acetone and methanol. The equilibrium adsorption isotherms of Langmuir, Freundlich, and Langmuir-Freundlich were obtained for the quantitative description of the cadmium uptake. The effect of pH on biosorption equilibrium was studied at values ranging from 1 to 6, demonstrating the importance of this parameter for an accurate evaluation of the biosorption process. Maximum biosorption was found pH higher than 4.5. The maximum biosorption uptake for the raw biomass was 65 mg g-1, while for formaldehyde cross-linking biomass the uptake increases to 99 mg g-1 and for protonated biomass to 95 mg g-1. Potentiometric titrations were carried out to estimate the total number of weak acid groups and to obtain their apparent pK value, 3.85, using the Katchalsky model. Kinetic studies varying cadmium concentration, algal dose, and ionic strength were carried out. Over 95% of the maximum cadmium uptake was achieved within 45 min, so the process can be considered relatively fast. A pseudo-second-order model, for the kinetics of cadmium biosorption, was shown to be able to reproduce experimental data points with accuracy. <br/
Polaron properties in ternary group-III nitride mixed crystals
Polaron properties are studied in bulk wurtzite nitride ternary mixed crystals AxB1-xN (A, B = Al, Ga, In) with the use of a dielectric continuum Fröhlich-like electron-phonon interaction Hamiltonian. The polaronic self-trapping energy and effective mass are analytically derived by taking the mixing properties of the LO and TO polarizations due to the anisotropy effect into account in the mono-phonon approximation. The numerical computation has been performed for the wurtzite ternary mixed crystal materials InxGa1-xN, AlxGa1-xN, and AlxIn1-xN as functions of the composition x. The results show that the polaronic self-trapping energies in the wurtzite structures are bigger than that in zinc-blende structures for the materials calculated. It is also found that the structure anisotropy increases the electron-phonon interaction in wurtizte nitride semiconductors. The results indicate that the LO-like phonon influence on the polaronic self-trapping energy and effective mass is dominant, and the anisotropy effect is obvious. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005