30 research outputs found

    L1CAM binds ErbB receptors through Ig-like domains coupling cell adhesion and neuregulin signalling.

    Get PDF
    During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM

    The promoter of ZmMRP-1, a maize transfer cell-specific transcriptional activator, is induced at solute exchange surfaces and responds to transport demands

    Get PDF
    Transfer cells have specializations that facilitate the transport of solutes across plant exchange surfaces. ZmMRP-1 is a maize (Zea mays) endosperm transfer cell-specific transcriptional activator that plays a central role in the regulatory pathways controlling transfer cell differentiation and function. The present work investigates the signals controlling the expression of ZmMRP-1 through the production of transgenic lines of maize, Arabidopsis, tobacco and barley containing ZmMRP-1promoter:GUS reporter constructs. The GUS signal predominantly appeared in regions of active transport between source and sink tissues, including nematode-induced feeding structures and at sites of vascular connection between developing organs and the main plant vasculature. In those cases, promoter induction was associated with the initial developmental stages of transport structures. Significantly, transfer cells also differentiated in these regions suggesting that, independent of species, location or morphological features, transfer cells might differentiate in a similar way under the influence of conserved induction signals. In planta and yeast experiments showed that the promoter activity is modulated by carbohydrates, glucose being the most effective inducer

    Thyroid hormone action in the adult brain: gene expression profiling of the effects of single and multiple doses of triiodo-L-thyronine in the rat striatum

    No full text
    Abstract Thyroid hormones have profound effects on mood and behavior, but the molecular basis of thyroid hormone action in the adult brain is relatively unknown. In particular, few thyroid hormone-dependent genes have been identified in the adult brain despite extensive work carried out on the developing brain. In this work we performed global analysis of gene expression in the adult rat striatum in search for genomic changes taking place after administration of T(3) to hypothyroid rats. The hormone was administered in two different schedules: 1) a single, large dose of 25 microg per 100 g body weight (SD) or 2) 1.5 microg per 100 g body weight once daily for 5 d (RD). Twenty-four hours after the single or last of multiple doses, gene expression in the striatum was analyzed using Codelink microarrays. SD caused up-regulation of 149 genes and down-regulation of 88 genes. RD caused up-regulation of 18 genes and down-regulation of one gene. The results were confirmed by hybridization to Affymetrix microarrays and by TaqMan PCR. Among the genes identified are genes involved in circadian regulation and the regulation of signaling pathways in the striatum. These results suggest that thyroid hormone is involved in regulation of striatal physiology at multiple control points. In addition, they may explain the beneficial effects of large doses of thyroid hormone in bipolar disorder

    A combined approach identifies a limited number of new thyroid hormone target genes in post-natal mouse cerebellum.

    No full text
    Thyroid hormones act directly on gene transcription in the post-natal developing cerebellum, controlling neuronal, and glial cell differentiation. We have combined three experimental approaches to identify the target genes that are underlying this phenomenon: 1) a microarray analysis of gene expression to identify hormone responsive genes in the cerebellum of Pax8-/- mice, a transgenic mouse model of congenital hypothyroidism; 2) a similar microarray analysis on primary culture of cerebellum neurons; and 3) a bioinformatics screen of conserved putative-binding sites in the mouse genome. This identifies surprisingly a small set of target genes, which, for some of them, might be key regulators of cerebellum development and neuronal differentiation

    Uridine 5′-Triphosphate Promotes <i>In Vitro</i> Schwannoma Cell Migration through Matrix Metalloproteinase-2 Activation

    No full text
    <div><p>In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5′-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y<sub>2</sub> receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y<sub>2</sub> receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates <i>in vitro</i> Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y<sub>2</sub> receptors and MAPK pathway activation.</p></div

    L1CAM-erbB interaction enhances neuregulin induced phosphorylation of erbB3. a

    No full text
    <p>) Upper panel: MCF-7 cells were transiently transfected with pcDNA3-L1CAM or pcDNA3 empty vector. 24 h later, cells were serum starved and stimulated with recombinant NRG1 (50 nM) for 15 min. Then, cells were harvested and lysed. Extracts were submitted to SDS-PAGE and blotted with anti-p-Tyr monoclonal antibody or anti-erbB3 polyclonal antibody. This experiment was repeated three times. A representative experiment is shown. Lower panel: the same approach was used in cells transfected with the ΔIg-L1CAM truncated construct. This experiment was repeated twice. One of them is shown. <b>b</b>) Quantification of western blots by densitometry. The normalized amount of phosphorylated 180 kDa band is increased in cells that express the full length but not the truncated ΔIg-L1CAM protein, suggesting that the physical interaction of L1CAM and erbB3 is needed for the enhancing effect on neuregulin receptor activation. Bars represent standard errors <b>c</b>) Proposed model: the interaction with L1CAM sensitizes erbB receptors to the activation by neuregulins. Removing the Ig-like rich region of L1CAM prevents the interaction and avoids receptor sensitization. For simplicity, only <i>cis</i>-interactions are depicted in the model.</p
    corecore