659 research outputs found
Development of fuel cell electrodes, Electrode improvement and life testing, tasks 1 and 3 Final report, 30 Jun. 1966 - 30 Apr. 1968
Volt-ampere characteristics improvement and life testing of electrodes for hydrogen oxygen fuel cell
Knot Floer homology detects fibred knots
Ozsv\'ath and Szab\'o conjectured that knot Floer homology detects fibred
knots in . We will prove this conjecture for null-homologous knots in
arbitrary closed 3--manifolds. Namely, if is a knot in a closed 3--manifold
, is irreducible, and is monic, then is fibred.
The proof relies on previous works due to Gabai, Ozsv\'ath--Szab\'o, Ghiggini
and the author. A corollary is that if a knot in admits a lens space
surgery, then the knot is fibred.Comment: version 4: incorporates referee's suggestions, to appear in
Inventiones Mathematica
Recommended from our members
Laser-Induced Spall Of Aluminum And Aluminum Alloys At High Strain Rates
We conducted laser-induced spall experiments aimed at studying how a material's microstructure affects the tensile fracture characteristics at high strain rates (> 10(6) s(-1)). We used the Z-Beamlet Laser at Sandia National Laboratory to drive shocks and to measure the spall strength of aluminum targets with various microstructures. The targets were recrystallized, high-purity aluminum (Al-HP RX), recrystallized aluminum + 3 wt.% magnesium (Al-3Mg RX), and cold-worked aluminum + 3 wt.% magnesium (Al-3Mg CW). The Al-3Mg RX and Al-3Mg CW are used to explore the roles that solid-solution alloying and cold-work strengthening play in the spall process. Using a line-VISAR (Velocity Interferometer System for Any Reflector) and analysis of recovered samples, we were able to measure spall strength and determine failure morphology in these targets. We find that the spall strength is highest for Al-HP RX. Analysis reveals that material grain size plays a vital role in the fracture morphology and spall strength results.Mechanical Engineerin
Toward a dynamical shift condition for unequal mass black hole binary simulations
Moving puncture simulations of black hole binaries rely on a specific gauge
choice that leads to approximately stationary coordinates near each black hole.
Part of the shift condition is a damping parameter, which has to be properly
chosen for stable evolutions. However, a constant damping parameter does not
account for the difference in mass in unequal mass binaries. We introduce a
position dependent shift damping that addresses this problem. Although the
coordinates change, the changes in the extracted gravitational waves are small.Comment: 15 pages, submitted to CQG for NRDA 2009 conference proceeding
Circular orbits and spin in black-hole initial data
The construction of initial data for black-hole binaries usually involves the
choice of free parameters that define the spins of the black holes and
essentially the eccentricity of the orbit. Such parameters must be chosen
carefully to yield initial data with the desired physical properties. In this
paper, we examine these choices in detail for the quasiequilibrium method
coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we
compare two independent criteria for choosing the orbital frequency, the
"Komar-mass condition" and the "effective-potential method," and find excellent
agreement. Second, we implement quasi-local measures of the spin of the
individual holes, calibrate these with corotating binaries, and revisit the
construction of non-spinning black hole binaries. Higher-order effects, beyond
those considered in earlier work, turn out to be important. Without those,
supposedly non-spinning black holes have appreciable quasi-local spin;
furthermore, the Komar-mass condition and effective potential method agree only
when these higher-order effects are taken into account. We compute a new
sequence of quasi-circular orbits for non-spinning black-hole binaries, and
determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D,
revtex4; Fixed error in computing proper separation and updated figures and
tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec.
IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in
Eq. (A7b), included minor changes from PRD editin
Defining spatial housing submarkets: Exploring the case for expert delineated boundaries
Although there are numerous reasons for real estate analysts to construct spatial housing submarkets, there is little clarity about how this might best be done in practice. The existing literature offers a variety of techniques including those based on principal components analysis, cluster analysis and a range of other statistical procedures. This paper asks whether, given their market expertise and their role in disseminating information, shaping search patterns and informing bid formation, real estate agents might offer an effective but less data intensive method of submarket construction. The empirical research is based on an experiment that compares the predictive of different sets of submarket boundaries constructed by using either standard statistical methods or through consultation with real estate agents and other market analysts. The analysis draws on housing transactions data from Istanbul, Turkey. While the results do not demonstrate the outright superiority of any single method, they do suggest that expert-defined boundaries tend to perform at least as well as alternative construction techniques. Importantly, the results suggest that agent-based methods for delineating submarket boundaries might be used with a degree of confidence by real estate analysts and planners in market contexts where rich micro-datasets are not readily available. This has been one of the constraints internationally on wider adoption of submarket boundaries as an analytical tool
Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stoichiometry
<p>Abstract</p> <p>Background</p> <p>Human T-lymphotropic virus type 1 (HTLV-1) is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an <it>EYFP </it>reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells.</p> <p>Results</p> <p>The codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP) production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM). Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS). The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions.</p> <p>Conclusions</p> <p>In summary, our studies represent the first quantitative biophysical analysis of HTLV-1-like particles and reveal novel insights into particle morphology and Gag stochiometry.</p
- …