164 research outputs found

    NIRT: gated transport through carbon nanotube membranes

    Get PDF
    Issued as final reportUniversity of California, Berkele

    Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces.

    Get PDF
    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces

    Ultra-Short Pulsed Laser Annealing Effects on MoS2 Transistors with Asymmetric and Symmetric Contacts

    Get PDF
    The ultra-short pulsed laser annealing process enhances the performance of MoS 2 thin film transistors (TFTs) without thermal damage on plastic substrates. However, there has been insufficient investigation into how much improvement can be brought about by the laser process. In this paper, we observed how the parameters of TFTs, i.e., mobility, subthreshold swing, I on /I off ratio, and V th , changed as the TFTs’ contacts were (1) not annealed, (2) annealed on one side, or (3) annealed on both sides. The results showed that the linear effective mobility (”eff_lin) increased from 13.14 [cm 2 /Vs] (not annealed) to 18.84 (one side annealed) to 24.91 (both sides annealed). Also, I on /I off ratio increased from 2.27 x 10 5 (not annealed) to 3.14 x 10 5 (one side annealed) to 4.81 x 10 5 (both sides annealed), with V th shifting to negative direction. Analyzing the main reason for the improvement through the Y function method (YFM), we found that both the contact resistance (R c ) and the channel interface resistance (R ch ) improves after the pulsed laser annealings under different conditions. Moreover, the Rc enhances more dramatically than the R ch does. In conclusion, our picosecond laser annealing improves the performance of TFTs (especially, the R c ) in direct proportion to the number of annealings applied. The results will contribute to the investigation about correlations between the laser annealing process and the performance of devices. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.1
    • 

    corecore