12 research outputs found

    Mother Centriole Distal Appendages Mediate Centrosome Docking at the Immunological Synapse and Reveal Mechanistic Parallels with Ciliogenesis.

    Get PDF
    Cytotoxic T lymphocytes (CTLs) are highly effective serial killers capable of destroying virally infected and cancerous targets by polarized release from secretory lysosomes. Upon target contact, the CTL centrosome rapidly moves to the immunological synapse, focusing microtubule-directed release at this point [1-3]. Striking similarities have been noted between centrosome polarization at the synapse and basal body docking during ciliogenesis [1, 4-8], suggesting that CTL centrosomes might dock with the plasma membrane during killing, in a manner analogous to primary cilia formation [1, 4]. However, questions remain regarding the extent and function of centrosome polarization at the synapse, and recent reports have challenged its role [9, 10]. Here, we use high-resolution transmission electron microscopy (TEM) tomography analysis to show that, as in ciliogenesis, the distal appendages of the CTL mother centriole contact the plasma membrane directly during synapse formation. This is functionally important as small interfering RNA (siRNA) targeting of the distal appendage protein, Cep83, required for membrane contact during ciliogenesis [11], impairs CTL secretion. Furthermore, the regulatory proteins CP110 and Cep97, which must dissociate from the mother centriole to allow cilia formation [12], remain associated with the mother centriole in CTLs, and neither axoneme nor transition zone ciliary structures form. Moreover, complete centrosome docking can occur in proliferating CTLs with multiple centriole pairs. Thus, in CTLs, centrosomes dock transiently with the membrane, within the cell cycle and without progression into ciliogenesis. We propose that this transient centrosome docking without cilia formation is important for CTLs to deliver rapid, repeated polarized secretion directed by the centrosome.We thank the Wellcome Trust for funding to GMG (075880) and CIMR (100140).This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.cub.2015.10.02

    Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform

    Get PDF
    Genetic studies increasingly rely on high-throughput phenotyping, but the resulting longitudinal data pose analytical challenges. We used canopy height data from an automated field phenotyping platform to compare several approaches to scanning for quantitative trait loci (QTLs) and performing genomic prediction in a wheat recombinant inbred line mapping population based on up to 26 sampled time points (TPs). We detected four persistent QTLs (i.e. expressed for most of the growing season), with both empirical and simulation analyses demonstrating superior statistical power of detecting such QTLs through functional mapping approaches compared with conventional individual TP analyses. In contrast, even very simple individual TP approaches (e.g. interval mapping) had superior detection power for transient QTLs (i.e. expressed during very short periods). Using spline-smoothed phenotypic data resulted in improved genomic predictive abilities (5–8% higher than individual TP prediction), while the effect of including significant QTLs in prediction models was relatively minor (<1–4% improvement). Finally, although QTL detection power and predictive ability generally increased with the number of TPs analysed, gains beyond five or 10 TPs chosen based on phenological information had little practical significance. These results will inform the development of an integrated, semi-automated analytical pipeline, which will be more broadly applicable to similar data sets in wheat and other crops

    Gene-based mapping of trehalose biosynthetic pathway genes reveals association with source- and sink-related yield traits in a spring wheat panel

    Get PDF
    Trehalose 6-phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source- and sink-related traits remain largely unknown. We used enrichment-capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield-related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth, and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain-related traits. Three TPS1 homeologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain-related traits. Gene-based prediction improved predictive ability for grain weight when gene effects were combined with the whole-genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes

    Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity.

    Get PDF
    CD8 cytotoxic T lymphocytes (CTLs) rely on rapid reorganization of the branched F-actin network to drive the polarized secretion of lytic granules, initiating target cell death during the adaptive immune response. Branched F-actin is generated by the nucleation factor actin-related protein 2/3 (Arp2/3) complex. Patients with mutations in the actin-related protein complex 1B (ARPC1B) subunit of Arp2/3 show combined immunodeficiency, with symptoms of immune dysregulation, including recurrent viral infections and reduced CD8+ T cell count. Here, we show that loss of ARPC1B led to loss of CTL cytotoxicity, with the defect arising at 2 different levels. First, ARPC1B is required for lamellipodia formation, cell migration, and actin reorganization across the immune synapse. Second, we found that ARPC1B is indispensable for the maintenance of TCR, CD8, and GLUT1 membrane proteins at the plasma membrane of CTLs, as recycling via the retromer and WASH complexes was impaired in the absence of ARPC1B. Loss of TCR, CD8, and GLUT1 gave rise to defects in T cell signaling and proliferation upon antigen stimulation of ARPC1B-deficient CTLs, leading to a progressive loss of CD8+ T cells. This triggered an activation-induced immunodeficiency of CTL activity in ARPC1B-deficient patients, which could explain the susceptibility to severe and prolonged viral infections

    Regulation of base excision repair: Ntg1 nuclear and mitochondrial dynamic localization in response to genotoxic stress

    Get PDF
    Numerous human pathologies result from unrepaired oxidative DNA damage. Base excision repair (BER) is responsible for the repair of oxidative DNA damage that occurs in both nuclei and mitochondria. Despite the importance of BER in maintaining genomic stability, knowledge concerning the regulation of this evolutionarily conserved repair pathway is almost nonexistent. The Saccharomyces cerevisiae BER protein, Ntg1, relocalizes to organelles containing elevated oxidative DNA damage, indicating a novel mechanism of regulation for BER. We propose that dynamic localization of BER proteins is modulated by constituents of stress response pathways. In an effort to mechanistically define these regulatory components, the elements necessary for nuclear and mitochondrial localization of Ntg1 were identified, including a bipartite classical nuclear localization signal, a mitochondrial matrix targeting sequence and the classical nuclear protein import machinery. Our results define a major regulatory system for BER which when compromised, confers a mutator phenotype and sensitizes cells to the cytotoxic effects of DNA damage

    Dynamic Compartmentalization of Base Excision Repair Proteins in Response to Nuclear and Mitochondrial Oxidative Stress▿

    No full text
    DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress

    Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity

    Get PDF
    CD8 cytotoxic T lymphocytes (CTLs) rely on rapid reorganization of the branched F-actin network to drive the polarized secretion of lytic granules, initiating target cell death during the adaptive immune response. Branched F-actin is generated by the nucleation factor actin-related protein 2/3 (Arp2/3) complex. Patients with mutations in the actin-related protein complex 1B (ARPC1B) subunit of Arp2/3 show combined immunodeficiency, with symptoms of immune dysregulation, including recurrent viral infections and reduced CD8+ T cell count. Here, we show that loss of ARPC1B led to loss of CTL cytotoxicity, with the defect arising at 2 different levels. First, ARPC1B is required for lamellipodia formation, cell migration, and actin reorganization across the immune synapse. Second, we found that ARPC1B is indispensable for the maintenance of TCR, CD8, and GLUT1 membrane proteins at the plasma membrane of CTLs, as recycling via the retromer and WASH complexes was impaired in the absence of ARPC1B. Loss of TCR, CD8, and GLUT1 gave rise to defects in T cell signaling and proliferation upon antigen stimulation of ARPC1B-deficient CTLs, leading to a progressive loss of CD8+ T cells. This triggered an activation-induced immunodeficiency of CTL activity in ARPC1B-deficient patients, which could explain the susceptibility to severe and prolonged viral infections
    corecore