15,926 research outputs found

    The C-metric as a colliding plane wave space-time

    Get PDF
    It is explicitly shown that part of the C-metric space-time inside the black hole horizon may be interpreted as the interaction region of two colliding plane waves with aligned linear polarization, provided the rotational coordinate is replaced by a linear one. This is a one-parameter generalization of the degenerate Ferrari-Ibanez solution in which the focussing singularity is a Cauchy horizon rather than a curvature singularity.Comment: 6 pages. To appear in Classical and Quantum Gravit

    The True Colours of Carbon

    Get PDF
    Carbon offset projects in developing countries are one of the principal mechanisms designed to reduce greenhouse gas emissions and promote sustainable development yet have critical limitations in both areas. Here we present a framework for categorizing carbon offset projects according to four general approaches to the reduction of greenhouse gas emissions: (1) efficiency ('Brown'); innovation ('Red'), terrestrial sequestration ('Green') or sequestration in aquatic environments ('Blue'). Analysis of the 6109 CDM projects currently in the CDM "pipeline" reveals that 99% are Brown or Red, and only 1% are Green or Blue, yet Green and Blue projects typically offer a far greater range of benefits for ecosystems and society. The analysis concludes that the designers of emissions trading schemes should endorse Green and Blue offset projects as preferred forms of emissions offsetting, and that firms using offsets for compliance purposes be required to declare in public reports the colours of their offset acquisitions. Such reform will help redirect demand in carbon markets toward blue and green offset projects, increasing the sustainability outcomes of carbon offset developments

    The absolute position of a resonance peak

    Full text link
    It is common practice in scattering theory to correlate between the position of a resonance peak in the cross section and the real part of a complex energy of a pole of the scattering amplitude. In this work we show that the resonance peak position appears at the absolute value of the pole's complex energy rather than its real part. We further demonstrate that a local theory of resonances can still be used even in cases previously thought impossible

    Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    Get PDF
    This paper reports experiments investigating the reaction of H2_{2} with uranium metal-oxide bilayers. The bilayers consist of \leq 100 nm of epitaxial α\alpha-U (grown on a Nb buffer deposited on sapphire) with a UO2_{2} overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2_{2} caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2_{2} overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2_{2}-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3_{3}. This explains why no diffraction peaks from UH3_{3} are observed. {\textcopyright British Crown Owned Copyright 2017/AWE}Comment: Submitted for peer revie

    The Paradoxical Forces for the Classical Electromagnetic Lag Associated with the Aharonov-Bohm Phase Shift

    Full text link
    The classical electromagnetic lag assocated with the Aharonov-Bohm phase shift is obtained by using a Darwin-Lagrangian analysis similar to that given by Coleman and Van Vleck to identify the puzzling forces of the Shockley-James paradox. The classical forces cause changes in particle velocities and so produce a relative lag leading to the same phase shift as predicted by Aharonov and Bohm and observed in experiments. An experiment is proposed to test for this lag aspect implied by the classical analysis but not present in the currently-accepted quantum topological description of the phase shift.Comment: 8 pages, 3 figure

    Consistent Resolution of Some Relativistic Quantum Paradoxes

    Get PDF
    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of Einstein-Podolsky-Rosen, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.Comment: Latex 42 pages, 7 figures in text using PSTrick

    Arithmetically Cohen-Macaulay Bundles on complete intersection varieties of sufficiently high multidegree

    Full text link
    Recently it has been proved that any arithmetically Cohen-Macaulay (ACM) bundle of rank two on a general, smooth hypersurface of degree at least three and dimension at least four is a sum of line bundles. When the dimension of the hypersurface is three, a similar result is true provided the degree of the hypersurface is at least six. We extend these results to complete intersection subvarieties by proving that any ACM bundle of rank two on a general, smooth complete intersection subvariety of sufficiently high multi-degree and dimension at least four splits. We also obtain partial results in the case of threefolds.Comment: 15 page

    Laryngeal Nerve Activity During Pulse Emission in the CF-FM Bat, Rhinolophus ferrumequinum. I. Superior Laryngeal Nerve (External Motor Branch)

    Get PDF
    The activity of the external (motor) branch of the superior laryngeal nerve (SLN), innervating the cricothyroid muscle, was recorded in the greater horseshoe bat,Rhinolophus ferrumequinum. The bats were induced to change the frequency of the constant frequency (CF) component of their echolocation signals by presenting artificial signals for which they Doppler shift compensated. The data show that the SLN discharge rate and the frequency of the emitted CF are correlated in a linear manner

    Universality of modulation length (and time) exponents

    Full text link
    We study systems with a crossover parameter lambda, such as the temperature T, which has a threshold value lambda* across which the correlation function changes from exhibiting fixed wavelength (or time period) modulations to continuously varying modulation lengths (or times). We report on a new exponent, nuL, characterizing the universal nature of this crossover. These exponents, similar to standard correlation length exponents, are obtained from motion of the poles of the momentum (or frequency) space correlation functions in the complex k-plane (or omega-plane) as the parameter lambda is varied. Near the crossover, the characteristic modulation wave-vector KR on the variable modulation length "phase" is related to that on the fixed modulation length side, q via |KR-q|\propto|T-T*|^{nuL}. We find, in general, that nuL=1/2. In some special instances, nuL may attain other rational values. We extend this result to general problems in which the eigenvalue of an operator or a pole characterizing general response functions may attain a constant real (or imaginary) part beyond a particular threshold value, lambda*. We discuss extensions of this result to multiple other arenas. These include the ANNNI model. By extending our considerations, we comment on relations pertaining not only to the modulation lengths (or times) but also to the standard correlation lengths (or times). We introduce the notion of a Josephson timescale. We comment on the presence of "chaotic" modulations in "soft-spin" and other systems. These relate to glass type features. We discuss applications to Fermi systems - with particular application to metal to band insulator transitions, change of Fermi surface topology, divergent effective masses, Dirac systems, and topological insulators. Both regular periodic and glassy (and spatially chaotic behavior) may be found in strongly correlated electronic systems.Comment: 22 pages, 15 figure

    P,T-Violating Nuclear Matrix Elements in the One-Meson Exchange Approximation

    Full text link
    Expressions for the P,T-violating NN potentials are derived for π\pi, ρ\rho and ω\omega exchange. The nuclear matrix elements for ρ\rho and ω\omega exchange are shown to be greatly suppressed, so that, under the assumption of comparable coupling constants, π\pi exchange would dominate by two orders of magnitude. The ratio of P,T-violating to P-violating matrix elements is found to remain approximately constant across the nuclear mass table, thus establishing the proportionality between time-reversal-violation and parity-violation matrix elements. The calculated values of this ratio suggest a need to obtain an accuracy of order 5×104 5 \times 10^{-4} for the ratio of the PT-violating to P-violating asymmetries in neutron transmission experiments in order to improve on the present limits on the isovector pion coupling constant.Comment: 17 pages, LaTeX, no figure
    corecore