416 research outputs found
A differential identity for Green functions
If P is a differential operator with constant coefficients, an identity is
derived to calculate the action of exp(P) on the product of two functions. In
many-body theory, P describes the interaction Hamiltonian and the identity
yields a hierarchy of Green functions. The identity is first derived for scalar
fields and the standard hierarchy is recovered. Then the case of fermions is
considered and the identity is used to calculate the generating function for
the Green functions of an electron system in a time-dependent external
potential.Comment: 14 page
Recommended from our members
Contaminated nickel scrap processing
The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs
Anisotropic Superexchange for nearest and next nearest coppers in chain, ladder and lamellar cuprates
We present a detailed calculation of the magnetic couplings between
nearest-neighbor and next-nearest-neighbor coppers in the edge-sharing
geometry, ubiquitous in many cuprates. In this geometry, the interaction
between nearest neighbor coppers is mediated via two oxygens, and the Cu-O-Cu
angle is close to 90 degrees. The derivation is based on a perturbation
expansion of a general Hubbard Hamiltonian, and produces numerical estimates
for the various magnetic energies. In particular we find the dependence of the
anisotropy energies on the angular deviation away from the 90 degrees geometry
of the Cu-O-Cu bonds. Our results are required for the correct analysis of the
magnetic structure of various chain, ladder and lamellar cuprates.Comment: 13 pages, Latex, 7 figure
Using rapid indicators for Enterococcus to assess the risk of illness after exposure to urban runoff contaminated marine water
Background: Traditional fecal indicator bacteria (FIB) measurement is too slow (>18 h) for timely swimmer warnings. Objectives: Assess relationship of rapid indicator methods (qPCR) to illness at a marine beach impacted by urban runoff. Methods: We measured baseline and two-week health in 9525 individuals visiting Doheny Beach 2007-08. Illness rates were compared (swimmers vs. non-swimmers). FIB measured by traditional (Enterococcus spp. by EPA Method 1600 or Enterolert™, fecal coliforms, total coliforms) and three rapid qPCR assays for Enterococcus spp. (Taqman, Scorpion-1, Scorpion-2) were compared to health. Primary bacterial source was a creek flowing untreated into ocean; the creek did not reach the ocean when a sand berm formed. This provided a natural experiment for examining FIB-health relationships under varying conditions. Results: We observed significant increases in diarrhea (OR 1.90, 95% CI 1.29-2.80 for swallowing water) and other outcomes in swimmers compared to non-swimmers. Exposure (body immersion, head immersion, swallowed water) was associated with increasing risk of gastrointestinal illness (GI). Daily GI incidence patterns were different: swimmers (2-day peak) and non-swimmers (no peak). With berm-open, we observed associations between GI and traditional and rapid methods for Enterococcus; fewer associations occurred when berm status was not considered. Conclusions: We found increased risk of GI at this urban runoff beach. When FIB source flowed freely (berm-open), several traditional and rapid indicators were related to illness. When FIB source was weak (berm-closed) fewer illness associations were seen. These different relationships under different conditions at a single beach demonstrate the difficulties using these indicators to predict health risk
Chirality and Symmetry Breaking in a discrete internal Space
In previous papers the permutation group S_4 has been suggested as an
ordering scheme for elementary particles, and the appearance of this finite
symmetry group was taken as indication for the existence of a discrete inner
symmetry space underlying elementary particle interactions. Here it is pointed
out that a more suitable choice than the tetrahedral group S_4 is the
pyritohedral group A_4 x Z_2 because its vibrational spectrum exhibits exactly
the mass multiplet structure of the 3 fermion generations. Furthermore it is
noted that the same structure can also be obtained from a primordial symmetry
breaking S_4 --> A_4. Since A_4 is a chiral group, while S_4 is achiral, an
argument can be given why the chirality of the inner pyritohedral symmetry
leads to parity violation of the weak interactions.Comment: 42 pages, 3 table
SARS-CoV-2 wastewater surveillance for public health action
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has garnered extensive public attention during the coronavirus disease pandemic as a proposed complement to existing disease surveillance systems. Over the past year, methods for detection and quantifi cation of SARS-CoV-2 viral RNA in untreated sewage have advanced, and concentrations in wastewater have been shown to correlate with trends in reported cases. Despite the promise of wastewater surveillance, for these measurements to translate into useful public health tools, bridging the communication and knowledge gaps between researchers and public health responders is needed. We describe the key uses, barriers, and applicability of SARS-CoV-2 wastewater surveillance for supporting public health decisions and actions, including establishing ethics consideration for monitoring. Although wastewater surveillance to assess community infections is not a new idea, the coronavirus disease pandemic might be the initiating event to make this emerging public health tool a sustainable nationwide surveillance system, provided that these barriers are addressed
Understanding preventive behaviors among mid-Western African-American men: a pilot qualitative study of prostate screening
http://dx.doi.org/10.1016/j.jomh.2011.03.00
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
- …