183 research outputs found

    Evaluation of an automatic gas chromatographic system for the identification of bacterial infective agents

    Get PDF
    The potential clinical application of gas chromatography to microbial identifcation was evaluated. A completely automated system, the MIS (Microbial Identification System; Hewlett- Packard) can analyse and identify pure strains by comparison of their cellular fatty acids patterns (C9-C20) with the reference parameters stored in a library. Three hundred and sixty-seven strains were tested, comparing the gas chromatographic results with those obtained by the traditional microbiological methods in the bacteriology laboratory of our Institute. A standardized extractive procedure was followed to obtain the fatty acid methyl esters (FAMEs), but some modifications to the recommended procedure were introduced in the bacterial growth procedures: colonies harvested not only from the recommended growth media but also from selective media routinely used in the bacteriology laboratory were successfully examined. These modifications did not influence the results but improved the ease for the user; good agreement with the comparison method was observed as far as identifications of genus and species are concerned for 238 cases. The major advantages of this computerized system are a reduction in the time required to obtain the final results, the elimination of human errors by using the autosampler and a better inter-laboratory comparability of results owing to a higher degree of objectivity. On the other hand, the limited throughput of MIS (only 40 samples in 24 h) prevents its use in a large routine laboratory; this technology is appropriate in emergency cases, in taxonomic studies and as a confirmatory method

    On the development of an efficient regenerative compressor

    Get PDF
    AbstractRegenerative compressors are attractive machines used in several industrial processes. Their main characteristic is the highly three-dimensional development of the flow. Consequently, usual approach for axial or centrifugal compressors design are not an affordable strategy. The analysis of the rotor/stator coupling is the main issue in the design of regenerative compressors because of the vane-less nature of the stator and the characteristic trajectory of the flow. This paper describes the design of an efficient regenerative compressor based on a highly detailed Reynolds Averaged Navier-Stokes (RANS) analysis. The targets of the activity are defined in terms of expected mass-flow, pressure rise and compressor efficiency, and then a preliminary design is performed using an in-house mono-dimensional tool based on simplified assumptions for the nominal operating conditions. Once the model provided the most promising geometrical characteristics for the target operating point, three-dimensional steady RANS analyses are performed to evaluate the actual performance of the compressor for a wide range of mass-flow values. Special attention has been paid to the generation of the computational mesh and a specific solution for the rotor row has been developed. Compressibility effects are non-negligible since the flow Mach number is higher than 0.5 in several compressor sections, including the leakage zone regions where the losses are higher. The rotor and the full compressor efficiencies are evaluated and discussed to underline the importance of the rotor/volute coupling. The flow behaviour inside of the volute as well as the distribution of losses is also discussed and some guidelines for the efficient design of regenerative compressors are presented

    Perylenetetracarboxy-3,4:9,10-diimide derivatives with large two-photon absorption activity

    Get PDF
    Three new perylenetetracarboxy-3,4:9,10-diimides, bearing 2,6-diisopropylphenyl groups at the imide positions and 4-(R-ethynyl)phenoxy moieties (R = 4,7-di(2-thienyl)benzo[c][1,2,5]thiadiazole (P2), pyrene (P3) or pyrene-CH2OCH2 (P4)) at the four bay positions, were prepared, along with the known related derivative (R = phenyl (P1)), and well characterized. They have large two-photon absorption (TPA) cross-sections (sigma(2)), as determined by the Z-scan technique, the highest values being reached with P2 which bears a planar -delocalized donor moiety. P3 is characterized by higher sigma(2) values than both P1, as expected for the higher -conjugation of the donor pyrene moiety with respect to phenyl, and P4, due to the presence of the flexible and non-conjugated CH2OCH2 bridge between the pyrene and the ethynyl fragment in the latter compound. The molecular geometry of P1-P4 has been optimized by DFT modeling, showing that in P2 and P3 the bay substituents are stacked due to the - interactions of both pyrene and thiophene groups. The LUMO of P1-P4 lies at the same energy and is essentially delocalized on the perylene core whereas the HOMO and HOMO-1 of both P2 and P3 are degenerate and do not show contribution from the perylene core contrarily to that of P1 and P4. The HOMO-LUMO gap is therefore essentially influenced by the HOMO which reflects the electronic charge delocalization on the bay substituents, the lower gaps being observed for P2 and P3, which are characterized by the best TPA properties

    Design of polymer-based antimicrobial hydrogels through physico-chemical transition

    Get PDF
    The antimicrobial activity represents a cornerstone in the development of biomaterials: it is a leading request in many areas, including biology, medicine, environment and industry. Over the years, different polymeric scaffolds are proposed as solutions, based on the encapsulation of metal ions/particles, antibacterial agents or antibiotics. However, the compliance with the biocompatibility criteria and the concentration of the active principles to avoid under- and over-dosing are being debated. In this work, we propose the synthesis of a versatile hydrogel using branched polyacrylic acid (carbomer 974P) and aliphatic polyetherdiamine (elastamine\uae) through physico-chemical transition, able to show its ability to counteract the bacterial growth and infections thanks to the polymers used, that are not subjected to further chemical modifications. In particular, the antimicrobial activity is clearly demonstrated against Staphyloccoccus aureus and Candida albicans, two well-known opportunistic pathogens. Moreover, we discuss the hydrogel use as drug carrier to design a unique device able to combine the antibacterial/antimicrobial properties to the controlled drug delivery, as a promising tool for a wide range of biomedical applications

    Fluorescent probes based on chemically-stable core/shell microcapsules for visual microcrack detection

    Get PDF
    Core/shell microcapsule-based fluorescent probes are presented in this work for potential use as early visual detection tool of microcracks in structural materials. A new microcapsule-based system is developed consisting of a UV-screening polyurea shell containing a fluorescent liquid core. The UV-screening functionality allows to prevent unwanted fluorescence emission from intact microcapsules upon UV-light exposure and yields excellent visibility contrast of the locally damaged region where fluorescent liquid core released from ruptured microcapsules is present. In addition, by carefully tuning the chemical composition of the shell material, microcapsules with enhanced chemical stability can be formed, as demonstrated by their superior solvent resistance over dwell time originating from the highly crosslinked shell structure that prevents core extraction from the microcapsules. A thorough chemical, thermal, morphological and optical characterization combined with a functional demonstration of the damage visualization capabilities of this new microcapsule-based system highlights its potential as a highly chemically-stable damage sensor for microcrack detection in structural materials

    Revealing structural evolution occurring from photo-initiated polymer network formation

    Get PDF
    Acomplete account of the structural evolution occurring during photopolymerisation is lacking. Here the physical changes occurring on the nanometer scale during photopolymerisation of acrylates are followed over time by FTIR, X-ray reflectometry, AFM, and GISAXS, offering insight into the mechanism by which initial composition influences the final morphology

    Salvage therapy with high dose Intravenous Immunoglobulins in acquired Von Willebrand Syndrome and unresponsive severe intestinal bleeding

    Get PDF
    A 91-year-old woman affected with acquired Von Willebrand (VW) syndrome and intestinal angiodysplasias presented with severe gastrointestinal bleeding (hemoglobin 5\ua0g/dl). Despite replacement therapy with VW factor/factor VIII concentrate qid, bleeding did not stop (eleven packed red blood cell units were transfused over three days). High circulating levels of anti-VW factor immunoglobulin M were documented immunoenzimatically. Heart ultrasound showed abnormalities of the mitral and aortic valves with severe flow alterations. When intravenous immunoglobulins were added to therapy, prompt clinical and laboratory responses occurred: complete cessation of bleeding, raise in hemoglobin, VW factor antigen, VW ristocetin cofactor and factor VIII levels as well as progressive reduction of the anti-VWF autoantibody levels

    Tuning the Properties of Biobased PU Coatings via Selective Lignin Fractionation and Partial Depolymerization

    Get PDF
    Polyurethane (PU) coatings with high lignin content and tunable properties were made using a combination of fractionation and partial catalytic depolymerization as a novel strategy to tailor lignin molar mass and hydroxyl group reactivity, the key parameters for use in PU coatings. Acetone organosolv lignin obtained from pilot-scale fractionation of beech wood chips was processed at the kilogram scale to produce lignin fractions with specific molar mass ranges (Mw 1000-6000 g/mol) and reduced polydispersity. Aliphatic hydroxyl groups were distributed relatively evenly over the lignin fractions, allowing detailed study of the correlation between lignin molar mass and hydroxyl group reactivity using an aliphatic polyisocyanate linker. As expected, the high molar mass fractions exhibited low cross-linking reactivity, yielding rigid coatings with a high glass transition temperature (Tg). The lower Mw fractions showed increased lignin reactivity, extent of cross-linking, and gave coatings with enhanced flexibility and lower Tg. Lignin properties could be further tailored by lignin partial depolymerization by reduction (PDR) of the beech wood lignin and its high molar mass fractions; excellent translation of the PDR process was observed from laboratory to the pilot scale necessary for coating applications in prospective industrial scenarios. Lignin depolymerization significantly improved lignin reactivity, and coatings produced from PDR lignin showed the lowest Tg values and highest coating flexibility. Overall, this study provides a powerful strategy for the production of PU coatings with tailored properties and high (>90%) biomass content, paving the path to the development of fully green and circular PU materials

    Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia

    Get PDF
    Although angiogenesis is a prerequisite for the growth of most human solid tumours, alternative mechanisms of vascularisation can be adopted. We have previously described a non-angiogenic growth pattern in liver metastases of colorectal adenocarcinomas (CRC) in which tumour cells replace hepatocytes at the tumour-liver interface, preserving the liver architecture and co-opting the sinusoidal blood vessels. The aim of this study was to determine whether this replacement pattern occurs during liver metastasis of breast adenocarcinomas (BC) and whether the lack of an angiogenic switch in such metastases is due to the absence of hypoxia and subsequent vascular fibrinogen leakage. The growth pattern of 45 BC liver metastases and 28 CRC liver metastases (73 consecutive patients) was assessed on haematoxylin- and eosin-stained tissue sections. The majority of the BC liver metastases had a replacement growth pattern (96%), in contrast to only 32% of the CRC metastases (P<0.0001). The median carbonic anhydrase 9 (CA9) expression (M75 antibody), as a marker of hypoxia, (intensity x % of stained tumour cells) was 0 in the BC metastases and 53 in the CRC metastases (P<0.0001). There was CA9 expression at the tumour-liver interface in only 16% of the BC liver metastases vs 54% of the CRC metastases (P=0.002). There was fibrin (T2G1 antibody) at the tumour-liver interface in only 21% of the BC metastases vs 56% of the CRC metastases (P=0.04). The median macrophage count (Chalkley morphometry; KP-1 anti-CD68 antibody) at the interface was 4.3 and 7.5, respectively (P<0.0001). Carbonic anhydrase 9 score and macrophage count were positively correlated (r=0.42; P=0.002) in all metastases. Glandular differentiation was less in the BC liver metastases: 80% had less than 10% gland formation vs only 7% of the CRC metastases (P<0.0001). The liver is a densely vascularised organ and can host metastases that exploit this environment by replacing the hepatocytes and co-opting the vasculature. Our findings confirm that a non-angiogenic pattern of liver metastasis indeed occurs in BC, that this pattern of replacement growth is even more prevalent than in CRC, and that the process induces neither hypoxia nor vascular leakage
    • …
    corecore