13,210 research outputs found
Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen
Data from the Fabry-Perot Interferometers at KEOPS (Sweden), Sodankylä (Finland), and Svalbard (Norway), have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (5 h) detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data. This gives a clear indication of the direction of flow of the gravity waves, and corroborates that the source is the auroral oval. This is because the energy is dissipated through heating in each cycle of a wave, therefore, over a given distance, short period waves lose more energy than long and dissipate before they reach their target
High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen
Recent advances in the performance of CCD detectors
have enabled a high time resolution study of the high
latitude upper thermosphere with Fabry-Perot Interferometers(FPIs) to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesospherelower thermosphere (MLT) dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere
The application of amino acid racemization in the acid soluble fraction of enamel to the estimation of the age of human teeth
Estimation of age-at-death for skeletonised forensic remains is one of the most significant problems in forensic anthropology. The majority of existing morphological and histological techniques are highly inaccurate, and show a bias towards underestimating the age of older individuals. One technique which has been successful in forensic age estimation is amino acid racemization in dentine. However, this method cannot be used on remains where the post-mortem interval is greater than 20 years. An alternative approach is to measure amino acid racemization in dental enamel, which is believed to be more resistant to change post-mortem. The extent of amino acid racemization in the acid soluble fraction of the enamel proteins was determined for modem known age teeth. A strong correlation was observed between the age of the tooth and the extent of racemization. No systematic bias in the direction of age estimation errors was detected. For the majority of teeth analyzed, the presence of dental caries did not affect the results obtained. In a minority of cases, carious teeth showed a higher level of racemization than would be expected given the age of the individual. These results indicate that amino acid racemization in enamel has the potential to be used in age estimation of skeletal remains. (C) 2007 Elsevier Ireland Ltd. All rights reserved
Demonstration of Self-Updating Landslide Hazard Maps with Dynamic Crowd-Sourced Data in Rwanda
No abstract availabl
Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures
The superfluid density is a fundamental quantity describing the response to a
rotation as well as in two-fluid collisional hydrodynamics. We present
extensive calculations of the superfluid density \rho_s in the BCS-BEC
crossover regime of a uniform superfluid Fermi gas at finite temperatures. We
include strong-coupling or fluctuation effects on these quantities within a
Gaussian approximation. We also incorporate the same fluctuation effects into
the BCS single-particle excitations described by the superfluid order parameter
\Delta and Fermi chemical potential \mu, using the Nozi\`eres and Schmitt-Rink
(NSR) approximation. This treatment is shown to be necessary for consistent
treatment of \rho_s over the entire BCS-BEC crossover. We also calculate the
condensate fraction N_c as a function of the temperature, a quantity which is
quite different from the superfluid density \rho_s. We show that the mean-field
expression for the condensate fraction N_c is a good approximation even in the
strong-coupling BEC regime. Our numerical results show how \rho_s and N_c
depend on temperature, from the weak-coupling BCS region to the BEC region of
tightly-bound Cooper pair molecules. In a companion paper by the authors
(cond-mat/0609187), we derive an equivalent expression for \rho_s from the
thermodynamic potential, which exhibits the role of the pairing fluctuations in
a more explicit manner.Comment: 32 pages, 12 figure
Two-fluid dynamics for a Bose-Einstein condensate out of local equilibrium with the non-condensate
We extend our recent work on the two-fluid hydrodynamics of a Bose-condensed
gas by including collisions involving both condensate and non-condensate atoms.
These collisions are essential for establishing a state of local thermodynamic
equilibrium between the condensate and non-condensate. Our theory is more
general than the usual Landau two-fluid theory, to which it reduces in the
appropriate limit, in that it allows one to describe situations in which a
state of complete local equilibrium between the two components has not been
reached. The exchange of atoms between the condensate and non-condensate is
associated with a new relaxational mode of the gas.Comment: 4 pages, revtex, 1 postscript figure, Fig.1 has been correcte
From meadows to milk to mucosa – adaptation of Streptococcus and Lactococcus species to their nutritional environments
Lactic acid bacteria (LAB) are indigenous to food-related habitats as well as associated with the mucosal surfaces of animals. The LAB family Streptococcaceae consists of the genera Lactococcus and Streptococcus. Members of the family include the industrially important species Lactococcus lactis, which has a long history safe use in the fermentative food industry, and the disease-causing streptococci Streptococcus pneumoniae and Streptococcus pyogenes. The central metabolic pathways of the Streptococcaceae family have been extensively studied because of their relevance in the industrial use of some species, as well as their influence on virulence of others. Recent developments in high-throughput proteomic and DNA-microarray techniques, in in vivo NMR studies, and importantly in whole-genome sequencing have resulted in new insights into the metabolism of the Streptococcaceae family. The development of cost-effective high-throughput sequencing has resulted in the publication of numerous whole-genome sequences of lactococcal and streptococcal species. Comparative genomic analysis of these closely related but environmentally diverse species provides insight into the evolution of this family of LAB and shows that the relatively small genomes of members of the Streptococcaceae family have been largely shaped by the nutritionally rich environments they inhabit.
Observations On Chytridiaceous Parasites Of Phanerogams. Xi. A Physoderma On Agropyron Repens
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141220/1/ajb211721.pd
- …