12,205 research outputs found

    Dollarizing The Cash Conversion Cycle

    Get PDF
    For most companies to be financially successful, it is critically important that operating cash flows be effectively managed. The Cash Conversion Cycle (CCC) is a traditional tool that companies use to measure the average time required for operating cash flows to cycle from cash out for the payment of payables and back to cash flow in from the collection of receivables. Knowledge that the rate their operating cash flow is speeding up or slowing down, as indicated by a decreasing or increasing CCC, while useful information, is of limited value to the company. The CCC indicates nothing about the absolute dollar amount of the cash flow. This paper illustrates a method by which the current year actual CCC and the next year target CCC, along with a few other items of data, can be used to forecast the dollar amount of the next year’s operating cash flows. The extension of the CCC to enable it to help forecast the dollar amount of operating cash flows makes the CCC more useful to companies attempting to effectively manage operating cash flows

    Papers in New Guinea Linguistics No. 13

    Get PDF

    Structure determination from powder data : Mogul and CASTEP

    Get PDF
    When solving the crystal structure of complex molecules from powder data, accurately locating the global minimum can be challenging, particularly where the number of internal degrees of freedom is large. The program Mogul provides a convenient means to access typical torsion angle ranges for fragments related to the molecule of interest. The impact that the application of modal torsion angle constraints has on the structure determination process of two structure solution attempts using DASH is presented. Once solved, accurate refinement of a molecular structure against powder data can also present challenges. Geometry optimisation using density functional theory in CASTEP is shown to be an effective means to locate hydrogen atom positions reliably and return a more accurate description of molecular conformation and intermolecular interactions than global optimisation and Rietveld refinement alone

    Two-fluid dynamics for a Bose-Einstein condensate out of local equilibrium with the non-condensate

    Full text link
    We extend our recent work on the two-fluid hydrodynamics of a Bose-condensed gas by including collisions involving both condensate and non-condensate atoms. These collisions are essential for establishing a state of local thermodynamic equilibrium between the condensate and non-condensate. Our theory is more general than the usual Landau two-fluid theory, to which it reduces in the appropriate limit, in that it allows one to describe situations in which a state of complete local equilibrium between the two components has not been reached. The exchange of atoms between the condensate and non-condensate is associated with a new relaxational mode of the gas.Comment: 4 pages, revtex, 1 postscript figure, Fig.1 has been correcte

    First Results from Viper: Detection of Small-Scale Anisotropy at 40 GHZ

    Get PDF
    Results of a search for small-scale anisotropy in the cosmic microwave background (CMB) are presented. Observations were made at the South Pole using the Viper telescope, with a .26 degree (FWHM) beam and a passband centered at 40 GHz. Anisotropy band-power measurements in bands centered at l = 108, 173, 237, 263, 422 and 589 are reported. Statistically significant anisotropy is detected in all bands.Comment: 5 pages, 4 figures, uses emulateapj.sty, submitted to ApJ Letter

    First Results from SPARO: Evidence for Large-Scale Toroidal Magnetic Fields in the Galactic Center

    Full text link
    We have observed the linear polarization of 450 micron continuum emission from the Galactic center, using a new polarimetric detector system that is operated on a 2 m telescope at the South Pole. The resulting polarization map extends ~ 170 pc along the Galactic plane and ~ 30 pc in Galactic latitude, and thus covers a significant fraction of the central molecular zone. Our map shows that this region is permeated by large-scale toroidal magnetic fields. We consider our results together with radio observations that show evidence for poloidal fields in the Galactic center, and with Faraday rotation observations. We compare all of these observations with the predictions of a magnetodynamic model for the Galactic center that was proposed in order to explain the Galactic Center Radio Lobe as a magnetically driven gas outflow. We conclude that the observations are basically consistent with the model.Comment: 11 pages, 2 figures, 1 table, submitted to ApJ Let

    A review of recent perspectives on biomechanical risk factors associated with anterior cruciate ligament injury

    Get PDF
    There is considerable evidence to support a number of biomechanical risk factors associated with non-contact anterior cruciate ligament (ACL) injury. This paper aimed to review these biomechanical risk factors and highlight future directions relating to them. Current perspectives investigating trunk position and relationships between strength, muscle activity and biomechanics during landing/cutting highlight the importance of increasing hamstring muscle force during dynamic movements through altering strength, muscle activity, muscle length and contraction velocity. In particular, increased trunk flexion during landing/cutting and greater hamstring strength are likely to increase hamstring muscle force during landing and cutting which have been associated with reduced ACL injury risk. Decision making has also been shown to influence landing biomechanics and should be considered when designing tasks to assess landing/cutting biomechanics. Coaches should therefore promote hamstring strength training and active trunk flexion during landing and cutting in an attempt to reduce ACL injury risk.Peer reviewe

    First and Second Sound Modes of a Bose-Einstein Condensate in a Harmonic Trap

    Full text link
    We have calculated the first and second sound modes of a dilute interacting Bose gas in a spherical trap for temperatures (0.6<T/Tc<1.20.6<T/T_{c}<1.2) and for systems with 10410^4 to 10810^8 particles. The second sound modes (which exist only below TcT_{c}) generally have a stronger temperature dependence than the first sound modes. The puzzling temperature variations of the sound modes near TcT_{c} recently observed at JILA in systems with 10310^3 particles match surprisingly well with those of the first and second sound modes of much larger systems.Comment: a shorten version, more discussions are given on the nature of the second sound. A long footnote on the recent work of Zaremba, Griffin, and Nikuni (cond-mat/9705134) is added, the spectrum of the (\ell=1, n_2=0) mode is included in fig.
    • …
    corecore