1,222 research outputs found

    The Charge of Glass and Silica Surfaces

    Full text link
    We present a method of calculating the electric charge density of glass and silica surfaces in contact with aqueous electrolytes for two cases of practical relevance that are not amenable to standard techniques: surfaces of low specific area at low ionic strength and surfaces interacting strongly with a second anionic surface.Comment: 7 pages, including 3 figure

    Characterizing Quantum-Dot Blinking Using Noise Power Spectra

    Full text link
    Fluctuations in the fluorescence from macroscopic ensembles of colloidal semiconductor quantum dots have the spectral form of 1/f noise. The measured power spectral density reflects the fluorescence intermittency of individual dots with power-law distributions of "on" and "off" times, and can thus serve as a simple method for characterizing such blinking behavior

    Giant Colloidal Diffusivity on Corrugated Optical Vortices

    Full text link
    A single colloidal sphere circulating around a periodically modulated optical vortex trap can enter a dynamical state in which it intermittently alternates between freely running around the ring-like optical vortex and becoming trapped in local potential energy minima. Velocity fluctuations in this randomly switching state still are characterized by a linear Einstein-like diffusion law, but with an effective diffusion coefficient that is enhanced by more than two orders of magnitude.Comment: 4 pages, 4 figure

    Flux reversal in a two-state symmetric optical thermal ratchet

    Full text link
    A Brownian particle's random motions can be rectified by a periodic potential energy landscape that alternates between two states, even if both states are spatially symmetric. If the two states differ only by a discrete translation, the direction of the ratchet-driven current can be reversed by changing their relative durations. We experimentally demonstrate flux reversal in a symmetric two-state ratchet by tracking the motions of colloidal spheres moving through large arrays of discrete potential energy wells created with dynamic holographic optical tweezers. The model's simplicity and high degree of symmetry suggest possible applications in molecular-scale motors.Comment: 4 pages, 5 figures, accepted for publication in Physical Review E, Rapid Communication

    High-precision spectroscopy of ultracold molecules in an optical lattice

    Get PDF
    The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88^{88}Sr2_2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.Comment: 12 pages, 4 figure

    Weak Long-Ranged Casimir Attraction in Colloidal Crystals

    Full text link
    We investigate the influence of geometric confinement on the free energy of an idealized model for charge-stabilized colloidal suspensions. The mean-field Poisson-Boltzmann formulation for this system predicts pure repulsion among macroionic colloidal spheres. Fluctuations in the simple ions' distribution provide a mechanism for the macroions to attract each other at large separations. Although this Casimir interaction is long-ranged, it is too weak to influence colloidal crystals' dynamics.Comment: 5 pages 2 figures ReVTe

    Colloidal transport through optical tweezer arrays

    Full text link
    Viscously damped particles driven past an evenly spaced array of potential energy wells or barriers may become kinetically locked in to the array, or else may escape from the array. The transition between locked-in and free-running states has been predicted to depend sensitively on the ratio between the particles' size and the separation between wells. This prediction is confirmed by measurements on monodisperse colloidal spheres driven through arrays of holographic optical traps.Comment: 4 pages, 4 figure

    Colloidal hydrodynamic coupling in concentric optical vortices

    Full text link
    Optical vortex traps created from helical modes of light can drive fluid-borne colloidal particles in circular trajectories. Concentric circulating rings of particles formed by coaxial optical vortices form a microscopic Couette cell, in which the amount of hydrodynamic drag experienced by the spheres depends on the relative sense of the rings' circulation. Tracking the particles' motions makes possible measurements of the hydrodynamic coupling between the circular particle trains and addresses recently proposed hydrodynamic instabilities for collective colloidal motions on optical vortices.Comment: 7 pages, 2 figures, submitted to Europhysics Letter

    Observation of Flux Reversal in a Symmetric Optical Thermal Ratchet

    Full text link
    We demonstrate that a cycle of three holographic optical trapping patterns can implement a thermal ratchet for diffusing colloidal spheres, and that the ratchet-driven transport displays flux reversal as a function of the cycle frequency and the inter-trap separation. Unlike previously described ratchet models, the approach we describe involves three equivalent states, each of which is locally and globally spatially symmetric, with spatiotemporal symmetry being broken by the sequence of states.Comment: 4 pages, 2 figures, submitted for publication in Physical Review Letter

    Determining Pair Interactions from Structural Correlations

    Full text link
    We examine metastable configurations of a two-dimensional system of interacting particles on a quenched random potential landscape and ask how the configurational pair correlation function is related to the particle interactions and the statistical properties of the potential landscape. Understanding this relation facilitates quantitative studies of magnetic flux line interactions in type II superconductors, using structural information available from Lorentz microscope images or Bitter decorations. Previous work by some of us supported the conjecture that the relationship between pair correlations and interactions in pinned flux line ensembles is analogous to the corresponding relationship in the theory of simple liquids. The present paper aims at a more thorough understanding of this relation. We report the results of numerical simulations and present a theory for the low density behavior of the pair correlation function which agrees well with our simulations and captures features observed in experiments. In particular, we find that the resulting description goes beyond the conjectured classical liquid type relation and we remark on the differences.Comment: 7 pages, 6 figures. See also http://rainbow.uchicago.edu/~grier
    • …
    corecore