2 research outputs found

    On the geometry of four qubit invariants

    Get PDF
    The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four-qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP3{\bf CP}^3. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, their magnitudes are entanglement monotones that fit nicely into the geometric set of nn-qubit ones related to Grassmannians of ll-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally in order to understand two, three and four-qubit entanglement in geometric terms we propose a unified setting based on CP3{\bf CP}^3 furnished with a fixed quadric.Comment: 19 page

    Identity interplay: The importance and challenges of consumer research on multiple identities

    No full text
    corecore