252 research outputs found
Stark Broadening of the B III 2s-2p Lines
We present a quantum-mechanical calculation of Stark line widths from
electron-ion collisions for the , lambda = 2066 and 2067
A, resonance transitions in B III. The results confirm the previous
quantum-mechanical R-matrix calculations but contradict recent measurements and
semi-classical and some semi-empirical calculations. The differences between
the calculations can be attributed to the dominance of small L partial waves in
the electron-atom scattering, while the large Stark widths inferred from the
measurements would be substantially reduced if allowance is made for
hydrodynamic turbulence from high Reynolds number flows and the associated
Doppler broadening.Comment: 21 pages, 4 figures; to be published in Phys. Rev.
Mixed Weyl Symbol Calculus and Spectral Line Shape Theory
A new and computationally viable full quantum version of line shape theory is
obtained in terms of a mixed Weyl symbol calculus. The basic ingredient in the
collision--broadened line shape theory is the time dependent dipole
autocorrelation function of the radiator-perturber system. The observed
spectral intensity is the Fourier transform of this correlation function. A
modified form of the Wigner--Weyl isomorphism between quantum operators and
phase space functions (Weyl symbols) is introduced in order to describe the
quantum structure of this system. This modification uses a partial Wigner
transform in which the radiator-perturber relative motion degrees of freedom
are transformed into a phase space dependence, while operators associated with
the internal molecular degrees of freedom are kept in their original Hilbert
space form. The result of this partial Wigner transform is called a mixed Weyl
symbol. The star product, Moyal bracket and asymptotic expansions native to the
mixed Weyl symbol calculus are determined. The correlation function is
represented as the phase space integral of the product of two mixed symbols:
one corresponding to the initial configuration of the system, the other being
its time evolving dynamical value. There are, in this approach, two
semiclassical expansions -- one associated with the perturber scattering
process, the other with the mixed symbol star product. These approximations are
used in combination to obtain representations of the autocorrelation that are
sufficiently simple to allow numerical calculation. The leading O(\hbar^0)
approximation recovers the standard classical path approximation for line
shapes. The higher order O(\hbar^1) corrections arise from the noncommutative
nature of the star product.Comment: 26 pages, LaTeX 2.09, 1 eps figure, submitted to 'J. Phys. B.
Ion-Collision Emission Excitation Cross Sections for Xenon Electric Thruster Plasmas
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76738/1/AIAA-33657-821.pd
Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstrably poorly understood. Here we calculate detailed tin opacity spectra using the Los Alamos atomic physics suite ATOMIC and validate these calculations with experimental comparisons. Our key finding is that EUV light largely originates from transitions between multiply-excited states, and not from the singly-excited states decaying to the ground state as is the current paradigm. Moreover, we find that transitions between these multiply-excited states also contribute in the same narrow window around 13.5 nm as those originating from singly-excited states, and this striking property holds over a wide range of charge states. We thus reveal the doubly magic behavior of tin and the origins of the EUV light
- âŠ