501 research outputs found

    Nuclear Model of Binding alpha-particles

    Full text link
    The model of binding alpha-particles in nuclei is suggested. It is shown good (with the accuracy of 1-2%) description of the experimental binding energies in light and medium nuclear systems. Our preliminary calculations show enhancement of the binding energy for super heavy nuclei with Z~120.Comment: 4 pages, 2 figures, Will be puplished in World Scientific as Procs. Int. Symposium on Exotic Nuclei, "EXON - 2004", July 5 - 12, 2004, Peterhof, Russi

    Proof that the Hydrogen-antihydrogen Molecule is Unstable

    Full text link
    In the framework of nonrelativistic quantum mechanics we derive a necessary condition for four Coulomb charges (m1+,m2,m3+,m4)(m_{1}^+, m_{2}^-, m_{3}^+, m_{4}^-), where all masses are assumed finite, to form the stable system. The obtained stability condition is physical and is expressed through the required minimal ratio of Jacobi masses. In particular this provides the rigorous proof that the hydrogen-antihydrogen molecule is unstable. This is the first result of this sort for four particles.Comment: Submitted to Phys.Rev.Let

    On stability of the neutron rich Oxygen isotopes

    Full text link
    Stability with respect to neutron emission is studied for highly neutron-excessive Oxygen isotopes in the framework of Hartree-Fock-Bogoliubov approach with Skyrme forces Sly4 and Ska. Our calculations show increase of stability around 40O.Comment: 5 pages, 3 figure

    Dynamic ferromagnetic proximity effect in photoexcited semiconductors

    Get PDF
    The spin dynamics of photoexcited carriers in semiconductors in contact with a ferromagnet is treated theoretically and compared with time-dependent Faraday rotation experiments. The long time response of the system is found to be governed by the first tens of picoseconds in which the excited plasma interacts strongly with the intrinsic interface between semiconductor and ferromagnet in spite of the existence of a Schottky barrier in equilibrium

    Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking

    Full text link
    Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has a double-peak structure, indicating the chiral symmetry breaking. This problem is further analyzed by examining eigenvalues and eigenfunctions of the master equation. In the case without recycling process, final probability distributions depend on the initial conditions. In the nonlinear autocatalytic case, time-evolution starting from a complete achiral state leads to a final distribution which differs from that deduced from the nonzero recycling result. This is due to the absence of the detailed balance, and a directed random walk model is shown to give the correct final profile. When the nonlinear autocatalysis is sufficiently strong and the initial state is achiral, the final probability distribution has a double-peak structure, related to the enantiomeric excess amplification. It is argued that with autocatalyses and a very small but nonzero spontaneous production, a single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure
    corecore