16 research outputs found

    Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Get PDF
    Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS) instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E) stain. The protein expression of transient receptor potential (TRP) ion channel of the vanilloid type 1 (TRPV1) and brain-derived neurotrophic factor (BDNF) were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p \u3c 0.05) in the inflamed distal colon when examined with western blot. TRPV1 was mainly expressed in the axonal terminals in submucosal area of the distal colon, and was co-localized with the neural marker PGP9.5. In sensory neurons in the dorsal root ganglia (DRG), BDNF expression was augmented by colonic inflammation examined in the L1 DRG, and was expressed in TRPV1 positive neurons. The elevated level of BDNF in L1 DRG by colonic inflammation was blunted by prolonged pre-treatment of the animals with the neurotoxin resiniferatoxin (RTX). Colonic inflammation did not alter either the morphology of the urinary bladder or the expression level of TRPV1 in this viscus. However, colonic inflammation decreased the inter-micturition intervals and decreased the quantities of urine voided. The increased bladder activity by colonic inflammation was attenuated by prolonged intraluminal treatment with RTX or treatment with intrathecal BDNF neutralizing antibody. Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation

    Location and function of VPAC(1), VPAC(2) and NPR-C receptors in VIP-induced vasodilation of porcine basilar arteries

    No full text
    Vasoactive intestinal peptide (VIP) is a vasodilator peptide present in cerebrovascular nerves. Vasoactive intestinal peptide can activate VPAC1, VPAC2 and the NPR-C receptor. This study sought to determine the receptors involved in VIP-induced vasodilation of porcine basilar arteries. Porcine basilar arteries contained the messenger ribonucleic acid of all three receptors. Immunocytochemical analysis of porcine basilar arteries revealed that the VPAC1 receptor is expressed on the endothelium, VPAC2 on the outer layers of the media and the NPR-C receptor throughout the artery, including nerves. Vasodilator responses to all receptor agonists showed that the receptors are functional. The vasodilator response to the VPAC1 receptor agonist was inhibited by L-NAME and abolished by endothelial denudation. Vasodilation induced by Ro-25–1553, the VPAC2 agonist, was unaffected by NOS inhibition or removal of the endothelium. Activation of the NPR-C receptor produced a vasodilation, which was susceptible to NOS inhibition and independent of endothelium. The vasodilator response to electrical stimulation at 20 Hz was attenuated by PG-99–465, the VPAC2 antagonist. This study shows that all known VIP receptors are involved in VIP-mediated vasodilation of porcine basilar arteries. The VPAC1 receptor is located on the endothelium and elicits vasodilation by generating nitric oxide (NO). The VPAC2 receptor is mainly expressed in the outer layers of the smooth muscle and induces vasodilation independently of NO in response to VIP released from intramural nerves. The NPR-C receptor produces NO-dependent vasodilation independently of the endothelium by stimulation of nNOS in intramural nerves

    Interplay between Nitric Oxide and Vasoactive Intestinal Polypeptide in Inducing Fluid Secretion in Rat Jejunum

    No full text
    Nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) interact in the regulation of neuromuscular function in the gut. They are also potent intestinal secretogogues that coexist in the enteric nervous system. The aims of this study were: (1) to investigate the interaction between NO and VIP in inducing fluid secretion in the rat jejunum, and (2) to determine whether the NO effect on intestinal fluid movement is neurally mediated. The single pass perfusion technique was used to study fluid movement in a 25 cm segment of rat jejunum in vivo. A solution containing 20 mml-arginine, a NO precursor, was perfused into the segment. The effect of the NO synthase inhibitors (l-NAME and l-nitroindazole (l-NI)) and the VIP antagonist ([4Cl-D-Phe6,Leu17]VIP (VIPa)) on l-arginine-induced changes in fluid movement, expressed as μl min−1 (g dry intestinal weight)−1, was determined. In addition, the effect of neuronal blockade by tetrodotoxin (TTX) and ablation of the myenteric plexus by benzalkonium chloride (BAC) was studied. In parallel groups of rats, the effect of l-NAME and l-NI on VIP-induced intestinal fluid secretion was also examined. Basal fluid absorption in control rats was (median (interquartile range)) 65 (45–78). l-Arginine induced a significant fluid secretion (−14 (−20 to −5); P < 0.01). This effect was reversed completely by l-NAME (60 (36–65); P < 0.01) and l-NI (46 (39–75); P < 0.01) and partially by VIPa (37 (14–47); P < 0.01). TTX and BAC partially inhibited the effect of l-arginine (22 (15–32) and 15 (10–26), respectively; P < 0.05). The effect of VIP on fluid movement (−23 (−26 to −14)) was partially reversed by l-NAME (24 (8.4–35.5); P < 0.01) and l-NI (29 (4–44); P < 0.01). The inhibition of VIP or NO synthase prevented l-arginine- and VIP-induced intestinal fluid secretion through a neural mechanism. The data suggest that NO enhances the release of VIP from nerve terminals and vice versa. Subsequently, each potentiates the other's effect in inducing intestinal fluid secretion
    corecore